How to solve the checking problem, Theory of Computation

The objective of the remainder of this assignment is to get you thinking about the problem of recognizing strings given various restrictions to your model of computation. We will work with whatever representation of an algorithm you are comfortable with (C or Pascal or, perhaps, some form of pseudo-code-just make sure it is unambiguous). Don't get too carried away with this. You only have a short time to work on it. The goal is primarily to think about this stu?, not to agonize over it. Whatever you do, don't turn it into a programming assignment; running code is not a bonus in this case.

In all of the problems we will assume the same basic machine:

• The program is read-only (it can't be modi?ed, you might even think of it as being hard-wired).

• For the sake of uniformity, let's assume the following methods for accessing the input:

- input(), a function that returns the current input character. You can use this in forms like

i ← input(), or

if (input() = ‘a' ) then . . . , or

push(input()).

This does not consume the character; any subsequent calls to input() prior to a call to next() will return the same character. You may assume that input() returns a unique value EOF if all of the input has been consumed.

- next(), a function that bumps to the next position in the input.

This discards the previous character which cannot be re-read. You can either assume that it returns nothing or that it returns TRUE in the case the input is not at EOF and FALSE otherwise.

Posted Date: 3/20/2013 6:08:24 AM | Location : United States







Related Discussions:- How to solve the checking problem, Assignment Help, Ask Question on How to solve the checking problem, Get Answer, Expert's Help, How to solve the checking problem Discussions

Write discussion on How to solve the checking problem
Your posts are moderated
Related Questions
The Myhill-Nerode Theorem provided us with an algorithm for minimizing DFAs. Moreover, the DFA the algorithm produces is unique up to isomorphism: every minimal DFA that recognizes

The computation of an SL 2 automaton A = ( Σ, T) on a string w is the maximal sequence of IDs in which each sequential pair of IDs is related by |- A and which starts with the in

The path function δ : Q × Σ* → P(Q) is the extension of δ to strings: This just says that the path labeled ε from any given state q goes only to q itself (or rather never l

The k-local Myhill graphs provide an easy means to generalize the suffix substitution closure property for the strictly k-local languages. Lemma (k-Local Suffix Substitution Clo

Construct a Mealy machine that can output EVEN or ODD According to the total no. of 1''s encountered is even or odd.



The upper string r ∈ Q+ is the sequence of states visited by the automaton as it scans the lower string w ∈ Σ*. We will refer to this string over Q as the run of A on w. The automa

Lemma 1 A string w ∈ Σ* is accepted by an LTk automaton iff w is the concatenation of the symbols labeling the edges of a path through the LTk transition graph of A from h?, ∅i to

proof ogdens lemma .with example i am not able to undestand the meaning of distinguished position .