How to solve the checking problem, Theory of Computation

The objective of the remainder of this assignment is to get you thinking about the problem of recognizing strings given various restrictions to your model of computation. We will work with whatever representation of an algorithm you are comfortable with (C or Pascal or, perhaps, some form of pseudo-code-just make sure it is unambiguous). Don't get too carried away with this. You only have a short time to work on it. The goal is primarily to think about this stu?, not to agonize over it. Whatever you do, don't turn it into a programming assignment; running code is not a bonus in this case.

In all of the problems we will assume the same basic machine:

• The program is read-only (it can't be modi?ed, you might even think of it as being hard-wired).

• For the sake of uniformity, let's assume the following methods for accessing the input:

- input(), a function that returns the current input character. You can use this in forms like

i ← input(), or

if (input() = ‘a' ) then . . . , or

push(input()).

This does not consume the character; any subsequent calls to input() prior to a call to next() will return the same character. You may assume that input() returns a unique value EOF if all of the input has been consumed.

- next(), a function that bumps to the next position in the input.

This discards the previous character which cannot be re-read. You can either assume that it returns nothing or that it returns TRUE in the case the input is not at EOF and FALSE otherwise.

Posted Date: 3/20/2013 6:08:24 AM | Location : United States







Related Discussions:- How to solve the checking problem, Assignment Help, Ask Question on How to solve the checking problem, Get Answer, Expert's Help, How to solve the checking problem Discussions

Write discussion on How to solve the checking problem
Your posts are moderated
Related Questions
As de?ned the powerset construction builds a DFA with many states that can never be reached from Q′ 0 . Since they cannot be reached from Q′ 0 there is no path from Q′ 0 to a sta

A context free grammar G = (N, Σ, P, S)  is in binary form if for all productions A we have |α| ≤ 2. In addition we say that G is in Chomsky Normaml Form (CNF) if it is in bi

Both L 1 and L 2 are SL 2 . (You should verify this by thinking about what the automata look like.) We claim that L 1 ∪ L 2 ∈ SL 2 . To see this, suppose, by way of con

We will assume that the string has been augmented by marking the beginning and the end with the symbols ‘?' and ‘?' respectively and that these symbols do not occur in the input al

write grammer to produce all mathematical expressions in c.

#can you solve a problem of palindrome using turing machine with explanation and diagrams?

The project 2 involves completing and modifying the C++ program that evaluates statements of an expression language contained in the Expression Interpreter that interprets fully pa

c program to convert dfa to re

Ask queyystion #Minimum 100 words accepted#