Generate a single sorted list of all n elements, Data Structure & Algorithms

Q. Assume that we have separated n elements in to m sorted lists. Explain how to generate a single sorted list of all n elements in time O (n log m )?                                                   


The list can be developed using Merge sort. Following is the method for it. Assume A is a sorted list with r elements and B is a sorted list with s elements. The operation that combines the elements of A and B into the single sorted list C with n = r +s elements is known as merging.

Procedure 1


Let A and B be the sorted arrays with R and S elements respectively. The

algorithm merges A and B into an array C with N= R + S elements.

1. [Initialize.] Set NA := 1, NB := 1 and PTR := 1.

2. [Compare.] Repeat while NA <=  R and NB <=  S : If A[NA] < B[NB], then ;

(a)  [Assign element from A to C.] Set C[PTR] := A[NA].

(b)  [Update pointers.] Set PTR := PTR + 1 and

NA := NA + 1. Else:

(a)   [Assign element from B to C.] Set C[PTR]

:= B[NB].

(b)   [Update pointers.] Set PTR := PTR + 1 and

NB := NB + 1.

[End of If structure.] [End of loop.]

3. [Assign remaining elements to C.] If NA > R, then:

Repeat for K = 0, 1, 2,...,S-NB:

Set C[PTR + K] := B[NB + K]. [End of loop.]


Repeat for K = 0, 1, 2, ..., R - NA:

Set C[PTR + K] := A[NA + K]. [End of loop.]

[End of If structure.]

4. Exit.

Procedure 2:


This procedure merges the sorted arrays A

and B into the array C.

1. Set NA := LBA, NB := LBB, PTR := LBC, UBA:= LBA + R - 1, UBB :=     LBB + S - 1.

2. call merging (A,UBA,B,UBB,C)

3. Return.

Procedure 3:


The N-element array A consists of sorted subarrays where each subarray has L elements apart from possibly the last subarray, which can have fewer than L elements. The procedure merges the pairs of subarrays of A and assigns them to the array B.

1.   Set Q := INT(N/(2*L)), S:= 2*L*Q and R := N - S.

2.  [Use procedure2 to merge the Q pairs of subarrays.] Repeat for J = 1, 2, . . ., Q:

(a) Set LB := 1 + (2*J - 2) * L. [Finds lower bound of first array.]

(b) Call MERGE(A, L, LB, A, L, LB + L, B, LB). [End of loop.]

3.  [Only one subarray left ?] If R ?  L, then: Repeat for J = 1, 2, . . ., R: Set B(S + J) := A(S+J).

[End of loop.]

Else :

CALL MERGE(A, L, S + 1, A, R, L + S + 1, B, S + 1).

[End of If structure.]

4.   Return.

Procedure 4 MERGESORT( A, N)

This particular algorithm sorts the Nth element array A using an auxiliary array B.

1.   Set L:=1 . [ Initiliazes the number of elements in the subarrays.]

2.   Repeat Steps 3 to 6 while L

3.            Call MERGEPASS(A,N,L,B)

4.            Call MERGEPASS(B,N,2*L,A).

5.             Set L:= 4*L.

[End of Step 2 loop].

6.   Exit.

Posted Date: 7/13/2012 2:58:57 AM | Location : United States

Related Discussions:- Generate a single sorted list of all n elements, Assignment Help, Ask Question on Generate a single sorted list of all n elements, Get Answer, Expert's Help, Generate a single sorted list of all n elements Discussions

Write discussion on Generate a single sorted list of all n elements
Your posts are moderated
Related Questions
Optimal solution to the problem given below. Obtain the initial solution by VAM Ware houses Stores Availibility I II III IV A 5 1 3 3 34 B 3 3 5 4 15 C 6 4 4 3 12 D 4 –1 4 2 19 Re

Q. Explain that how do we implement two stacks in one array A[1..n] in such a way that neither the stack overflows unless the total number of elements in both stacks together is n.

Explain State Space Tree If it is convenient to execute backtracking by constructing a tree of choices being made, the tree is known as a state space tree. Its root indicates a

HLS Colour Model  This model has the double-cone representation shown in Figure 3.40. The three colour parameters in this model are called hue (H), lightness (L), and Saturati

I=PR/12 numbers of years : Interest Rate up to 1 years : 5.50 Up to 5 years : 6.50 More than 5 year : 6.75 please design an algorithm based on the above information

Compare zero-address, one-address, two-address, and three-address machines by writing programs to compute: Y = (A – B X C) / (D + E X F) for each of the four machines. The inst

Merging 4 sorted files having 50, 10, 25 and 15 records will take time

Assertions and Abstract Data Types Even though we have defined assertions in terms of programs, notion can be extended to abstract data types (which are mathematical entities).

Define tractable and intractable problems Problems that can be solved in polynomial time are known as tractable problems, problems that cannot be solved in polynomial time are

The above 3 cases are also considered conversely while the parent of Z is to the right of its own parent. All the different kind of cases can be illustrated through an instance. Le