Generate a single sorted list of all n elements, Data Structure & Algorithms

Assignment Help:

Q. Assume that we have separated n elements in to m sorted lists. Explain how to generate a single sorted list of all n elements in time O (n log m )?                                                   

Ans.

The list can be developed using Merge sort. Following is the method for it. Assume A is a sorted list with r elements and B is a sorted list with s elements. The operation that combines the elements of A and B into the single sorted list C with n = r +s elements is known as merging.

Procedure 1

MERGING(A, R, B, S, C)

Let A and B be the sorted arrays with R and S elements respectively. The

algorithm merges A and B into an array C with N= R + S elements.

1. [Initialize.] Set NA := 1, NB := 1 and PTR := 1.

2. [Compare.] Repeat while NA <=  R and NB <=  S : If A[NA] < B[NB], then ;

(a)  [Assign element from A to C.] Set C[PTR] := A[NA].

(b)  [Update pointers.] Set PTR := PTR + 1 and

NA := NA + 1. Else:

(a)   [Assign element from B to C.] Set C[PTR]

:= B[NB].

(b)   [Update pointers.] Set PTR := PTR + 1 and

NB := NB + 1.

[End of If structure.] [End of loop.]

3. [Assign remaining elements to C.] If NA > R, then:

Repeat for K = 0, 1, 2,...,S-NB:

Set C[PTR + K] := B[NB + K]. [End of loop.]

Else:

Repeat for K = 0, 1, 2, ..., R - NA:

Set C[PTR + K] := A[NA + K]. [End of loop.]

[End of If structure.]

4. Exit.

Procedure 2:

MERGE(A, R, LBA, S, LBB, C, LBC)

This procedure merges the sorted arrays A

and B into the array C.

1. Set NA := LBA, NB := LBB, PTR := LBC, UBA:= LBA + R - 1, UBB :=     LBB + S - 1.

2. call merging (A,UBA,B,UBB,C)

3. Return.

Procedure 3:

MERGEPASS(A, N, L, B)

The N-element array A consists of sorted subarrays where each subarray has L elements apart from possibly the last subarray, which can have fewer than L elements. The procedure merges the pairs of subarrays of A and assigns them to the array B.

1.   Set Q := INT(N/(2*L)), S:= 2*L*Q and R := N - S.

2.  [Use procedure2 to merge the Q pairs of subarrays.] Repeat for J = 1, 2, . . ., Q:

(a) Set LB := 1 + (2*J - 2) * L. [Finds lower bound of first array.]

(b) Call MERGE(A, L, LB, A, L, LB + L, B, LB). [End of loop.]

3.  [Only one subarray left ?] If R ?  L, then: Repeat for J = 1, 2, . . ., R: Set B(S + J) := A(S+J).

[End of loop.]

Else :

CALL MERGE(A, L, S + 1, A, R, L + S + 1, B, S + 1).

[End of If structure.]

4.   Return.

Procedure 4 MERGESORT( A, N)

This particular algorithm sorts the Nth element array A using an auxiliary array B.

1.   Set L:=1 . [ Initiliazes the number of elements in the subarrays.]

2.   Repeat Steps 3 to 6 while L

3.            Call MERGEPASS(A,N,L,B)

4.            Call MERGEPASS(B,N,2*L,A).

5.             Set L:= 4*L.

[End of Step 2 loop].

6.   Exit.


Related Discussions:- Generate a single sorted list of all n elements

Encryption the plain-text using the round keys, Encryption the plain-text u...

Encryption the plain-text using the round keys: 1. (Key schedule) Implement an algorithm that will take a 128 bit key and generate the round keys for the AES encryption/decryp

Sorting, compare and contrast the bubble sort,quick sort,merge sort and rad...

compare and contrast the bubble sort,quick sort,merge sort and radix sort

Explain merge sort, Question 1 Explain the use of algorithms in computing ...

Question 1 Explain the use of algorithms in computing Question 2 Explain time complexity and space complexity of an algorithm Question 3 Explain how you can analyz

Explain stacks, What are stacks? A stack is a data structure that organ...

What are stacks? A stack is a data structure that organizes data similar to how one organizes a pile of coins. The new coin is always placed on the top and the oldest is on the

Sparse matrices, SPARSE MATRICES Matrices along with good number of zer...

SPARSE MATRICES Matrices along with good number of zero entries are called sparse matrices. Refer the following matrices of Figure (a)

Example which cause problems for hidden-surface algorithms, Example which c...

Example which cause problems for some hidden-surface algorithms Some special cases, which cause problems for some hidden-surface algorithms, are penetrating faces and cyclic ov

Example of telephone directory, A telephone directory having n = 10 records...

A telephone directory having n = 10 records and Name field as key. Let us assume that the names are stored in array 'm' i.e. m(0) to m(9) and the search has to be made for name "X"

Recursive function, The location of a node in a binary search tree is defin...

The location of a node in a binary search tree is defined as a string such as LLRRL, which represents the node that you find by starting at the root, and traversing Left, traverse

Multiplication, Implement multiple stacks in a single dimensional array. Wr...

Implement multiple stacks in a single dimensional array. Write algorithms for various stack operations for them.

Determine the stereo vision, Determine the stereo vision There is still...

Determine the stereo vision There is still one more major item missing, before we can look at a computer display or plot and perceive it just as we see a real object, namely th

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd