Fundamental sets of solutions, Mathematics

Assignment Help:

The time has at last come to describe "nice enough". We've been using this term during the last few sections to explain those solutions which could be used to form a general solution and this is now time to officially describe it.

First, since everything that we're going to be doing here only needs linear and homogeneous we won't need constant coefficients in our differential equation. Thus, let's start with the subsequent IVP.

p (t ) y′′ + q (t ) y′ + r (t ) y = 0   ............. (1)

 y (t0)= y0

 y′ (t0) = y0

Let's also assume that we have already got two solutions to this differential equation, y1(t) and y2(t). We identify from the Principle of Superposition as

 y (t ) = c1 y1 (t) + c2 y2 (t)    ................(2)

That will also be a solution to the differential equation.  What we need to know is whether or not it will be a general solution. So as for (2) to be considered a general solution this must satisfy the general initial conditions in (1).

 y (t0)= y0

 y′ (t0) = y0

 It will also imply that any solution to the differential equation can be written in form of.

Therefore, let's see if we can get constants which will satisfy these conditions. First differentiate (2) and plug in the initial conditions.

 y0 = y (t0) = c1 y1 (t0) + c2 y2 (t0)

y0′ = y′ (t0) = c1 y1′ (t0 ) + c2 y2′ (t0)    .................. (3)

As we are assuming that we've already found the two solutions everything under this system is technically identified and so it is a system which can be solved for c1 and c2. It can be done in general using Cramer's Rule.  By using Cramer's Rule provides the following solution.

2026_Fundamental Sets of Solutions.png

.........(4)

Here,

2092_Fundamental Sets of Solutions1.png

It is the determinant of a 2x2 matrix. If you don't identify about determinants which is okay, just utilize the formula that we've given above.

Now, (4) will provide the solution to the system (3). Remember that in practice we usually don't use Cramer's Rule to solve systems; we simply proceed in a straightforward way and solve the system using fundamental algebra techniques. Therefore, why did we use Cramer's Rule here so?

We used Cramer's Rule as we can use (4) to extend a condition which will permit us to determine when we can resolve for the constants. All three, here the denominators are the same that are use, of the quantities in (4) are just numbers and the only thing which will prevent us from in fact getting a solution will be while the denominator is zero.

The quantity in the denominator is termed as the Wronskian and is denoted as,

W(f,g) (t) =

574_Fundamental Sets of Solutions3.png

= f(t) g'(t) - g(t) f'(t)

So, assume that y1(t) and y2(t) are two solutions to (1) and that W ( y1 , y2)(t)  ≠ 0.  After that the two solutions are termed as a fundamental set of solutions and the general solution to (1) is

y (t ) = c1 y1 (t ) + c2 y2 (t )

We know here what "nice enough" means. Here two solutions are "nice enough" if they are a basic set of solutions.

Therefore, let's check one of the claims which we made in a previous section. We'll leave another two to you to check if you'd like to.


Related Discussions:- Fundamental sets of solutions

Logarithmic form and exponential form, Logarithmic form and exponential for...

Logarithmic form and exponential form ; We'll begin with b = 0 , b ≠ 1. Then we have y= log b x          is equivalent to                  x= b y The first one is called

Integration, find the area bounded by the curve y=5x^2-4x+3 from the limit ...

find the area bounded by the curve y=5x^2-4x+3 from the limit x=0 to x=5

Sequence and series, how can we prove that an absolute convergent series is...

how can we prove that an absolute convergent series is convergent but the converse is not true.

Quantitative, The Laser Computer Printer Company decides monthly what to pr...

The Laser Computer Printer Company decides monthly what to produce during the subsequent month. They produce three types of printers, the Laser Rocket, the Alpha Laser, and the La

How to calculate percentiles, Q. How to calculate Percentiles? Ans. ...

Q. How to calculate Percentiles? Ans. In a large group of standardized test scores we expect the scores to approximate a normal curve. If all scores are translated to z-s

What is a function, What is a Function, Anyway? Domain? Range? Next tim...

What is a Function, Anyway? Domain? Range? Next time you're at a fast-food restaurant, take a look at the price list. It may look something like this: • Hamburger.............

Reflection matrix, how do i solve reflection matrix just looking at the num...

how do i solve reflection matrix just looking at the numbers in a matrix

How to grow your brand with existing customers., "To grow your brand, you n...

"To grow your brand, you need to encourage your existing customers to buy your product a liitle more often. It is far more important to maximise the number of times your buyers buy

Study market, what toold we need to study market

what toold we need to study market

Normal to y=f(x) , If the normal to y=f(x) makes an angle of pie/4 with y-a...

If the normal to y=f(x) makes an angle of pie/4 with y-axis at (1,1) , then f''(x) is eqivalent to? Ans) The normal makes an angle 135 degree with the x axis. also f ''(1)

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd