First and second order derivative, Mathematics

Assignment Help:

Solution: We'll require the first and second derivative to do that.

y'(x) = -3/2x-5/2                                    y''(x) = 15/4x-7/2

Plug these and also the function in the differential equation.

4x2 ((15/4)x-7/2) + 12((-3/2)x-5/2) + 3x-3/2 = 0

(15/4)x-3/2 -18 x-3/2 +3x-3/2 = 0

0 = 0

Thus, y = x-3/2 does suit the differential equation and therefore is a solution. Why after that did I comprise the condition that x > 0?  I did not use such condition anywhere into the work demonstrating that the function would suit the differential equation.

To see why recall that:

y(x) = x-3/2 = 1/√x3

In such form this is clear that we will require avoiding x > 0 at the least as that would offer division by zero.

There is also a general rule of thumb which we are going to run along with in such class. This rule of thumb is as: Start along with real numbers, end by real numbers. Conversely, if our differential equation only comprises real numbers so we don't want solutions which provide complex numbers. Thus, in order to ignore complex numbers we will also require avoiding negative values of x.

Thus, we saw in the last illustration that even although a function may symbolically satisfy a differential equation, due to specific restrictions brought about through the solution we cannot utilize all values of the independent variable and thus, must make a restriction on the independent variable. It will be the case with various solutions to differential equations.

In the last illustration, notice that there are in fact several more possible solutions to the differential equation specified.  For example all of the subsequent are also solutions

265_First and second order derivative.png

I'll put down the details for you to check that such are actually solutions. Specified these illustrations can you come up along with any other solutions to the differential equation? There are actually an infinite number of solutions to that differential equation.

Thus, given about there are an infinite number of solutions to the differential equation in the last illustration we can ask a natural question. Which is the answer that we want or does that issue which answer we use? This question shows us to the subsequent definition in that section.


Related Discussions:- First and second order derivative

Ways for 30 identical balls can be distributed among 4 boys, In how many w...

In how many ways 30 identical balls can be DISTRIBUTED among 4 boys?? Ans) Let they get a,b,c,d respectively. You requireto find the non negative integral results of a+b+c+d=3

What is trigonometric ratios, What is Trigonometric Ratios ? Trigonome...

What is Trigonometric Ratios ? Trigonometry, a branch of mathematics, is based on the ratios known as sine, cosine, and tangent. Trigonometric ratios apply only to right trian

Statistics, reasons why we use statistics and examples of why?

reasons why we use statistics and examples of why?

Auxiliary methods for information distribution, AUXILIARY METHODS There...

AUXILIARY METHODS There are other reprographic methods which although commonly used earlier, are now mainly used for specific purposes. We think you should be aware of these me

Calculate the fourier cosine series, The Fourier series expansion for the p...

The Fourier series expansion for the periodic function, f ( t ) = |sin  t | is defined in its fundamental interval. Taking π = 3.142, calculate the Fourier cosine series app

Two tailed tests, Two Tailed Tests A two tailed test is generally used ...

Two Tailed Tests A two tailed test is generally used in statistical work as tests of significance for illustration, if a complaint lodged by the client is about a product not m

Find out the mean time, 1 . The probability that a couple will have a child...

1 . The probability that a couple will have a child with black hair is 0.6. If this couple has 7 children what is (a) the probability that exactly 3 of these children have bl

Conic sections, The locus of the midpoint of the chords of an ellipse which...

The locus of the midpoint of the chords of an ellipse which are drawn through an end of minor axis is called

Problem of purchasing, story of faicing problem when customer purchasing a ...

story of faicing problem when customer purchasing a product

Find homeomorphisms - complex root, All numbers refer to exercises (and not...

All numbers refer to exercises (and not "computer exercises") in Gallian. §22: 8, 16, 22, 24, 28, 36. In addition: Problem 1: Let a be a complex root of the polynomial x 6 +

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd