First and second order derivative, Mathematics

Assignment Help:

Solution: We'll require the first and second derivative to do that.

y'(x) = -3/2x-5/2                                    y''(x) = 15/4x-7/2

Plug these and also the function in the differential equation.

4x2 ((15/4)x-7/2) + 12((-3/2)x-5/2) + 3x-3/2 = 0

(15/4)x-3/2 -18 x-3/2 +3x-3/2 = 0

0 = 0

Thus, y = x-3/2 does suit the differential equation and therefore is a solution. Why after that did I comprise the condition that x > 0?  I did not use such condition anywhere into the work demonstrating that the function would suit the differential equation.

To see why recall that:

y(x) = x-3/2 = 1/√x3

In such form this is clear that we will require avoiding x > 0 at the least as that would offer division by zero.

There is also a general rule of thumb which we are going to run along with in such class. This rule of thumb is as: Start along with real numbers, end by real numbers. Conversely, if our differential equation only comprises real numbers so we don't want solutions which provide complex numbers. Thus, in order to ignore complex numbers we will also require avoiding negative values of x.

Thus, we saw in the last illustration that even although a function may symbolically satisfy a differential equation, due to specific restrictions brought about through the solution we cannot utilize all values of the independent variable and thus, must make a restriction on the independent variable. It will be the case with various solutions to differential equations.

In the last illustration, notice that there are in fact several more possible solutions to the differential equation specified.  For example all of the subsequent are also solutions

265_First and second order derivative.png

I'll put down the details for you to check that such are actually solutions. Specified these illustrations can you come up along with any other solutions to the differential equation? There are actually an infinite number of solutions to that differential equation.

Thus, given about there are an infinite number of solutions to the differential equation in the last illustration we can ask a natural question. Which is the answer that we want or does that issue which answer we use? This question shows us to the subsequent definition in that section.


Related Discussions:- First and second order derivative

How to solve systems of equations, How to solve Systems of Equations ? ...

How to solve Systems of Equations ? There's a simple method that you can use to solve most of the systems of equations you'll encounter in Calculus. It's called the "substitut

Volume and surface area, a conical hole drilled in a circular cylinder of h...

a conical hole drilled in a circular cylinder of height 12 and radius 5cm the height and radius of cone are also same find volume

Find fourier series, Question: Find Fourier series for the periodic fun...

Question: Find Fourier series for the periodic function of period 2 π,defined by      f(x) = x 4 ,  - π ≤ x ≤ π

Stats, the automatic hopper loader is set to put 36 tons of coal in each ca...

the automatic hopper loader is set to put 36 tons of coal in each car. the actual weights of coal loaded into each car arw normally distributed with a mean of 36 tons and a standar

Find out the hydrostatic force on the triangular plate, Find out the hydros...

Find out the hydrostatic force on the following triangular plate that is submerged in water as displayed. Solution The first thing to do here is set up an axis system

The prerequisites for multiplication, THE PREREQUISITES FOR MULTIPLICATION ...

THE PREREQUISITES FOR MULTIPLICATION : The word 'multiply', used in ordinary language, bears the meaning 'increase enormously For instance, bacteria multiply in favourable conditi

Relationship between the entries of a rotation matrix, 1. A 3d rotation mat...

1. A 3d rotation matrix has 9 (3 by 3) entries, and a 2d rotation matrix has 4 (2 by 2) entries. How many actual degrees of freedom are there in a 3d or 2d rotation? In other words

Factoring out the greatest common factor, Factoring out the greatest common...

Factoring out the greatest common factor of following polynomials.                    8x 4 - 4 x 3 + 10 x 2  Solution Primary we will notice that we can factor out a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd