First and second order derivative, Mathematics

Assignment Help:

Solution: We'll require the first and second derivative to do that.

y'(x) = -3/2x-5/2                                    y''(x) = 15/4x-7/2

Plug these and also the function in the differential equation.

4x2 ((15/4)x-7/2) + 12((-3/2)x-5/2) + 3x-3/2 = 0

(15/4)x-3/2 -18 x-3/2 +3x-3/2 = 0

0 = 0

Thus, y = x-3/2 does suit the differential equation and therefore is a solution. Why after that did I comprise the condition that x > 0?  I did not use such condition anywhere into the work demonstrating that the function would suit the differential equation.

To see why recall that:

y(x) = x-3/2 = 1/√x3

In such form this is clear that we will require avoiding x > 0 at the least as that would offer division by zero.

There is also a general rule of thumb which we are going to run along with in such class. This rule of thumb is as: Start along with real numbers, end by real numbers. Conversely, if our differential equation only comprises real numbers so we don't want solutions which provide complex numbers. Thus, in order to ignore complex numbers we will also require avoiding negative values of x.

Thus, we saw in the last illustration that even although a function may symbolically satisfy a differential equation, due to specific restrictions brought about through the solution we cannot utilize all values of the independent variable and thus, must make a restriction on the independent variable. It will be the case with various solutions to differential equations.

In the last illustration, notice that there are in fact several more possible solutions to the differential equation specified.  For example all of the subsequent are also solutions

265_First and second order derivative.png

I'll put down the details for you to check that such are actually solutions. Specified these illustrations can you come up along with any other solutions to the differential equation? There are actually an infinite number of solutions to that differential equation.

Thus, given about there are an infinite number of solutions to the differential equation in the last illustration we can ask a natural question. Which is the answer that we want or does that issue which answer we use? This question shows us to the subsequent definition in that section.


Related Discussions:- First and second order derivative

Calculate the investment - apr 4 percent, Suppose you start saving today fo...

Suppose you start saving today for a $55,000 down payment that you plan to make on a house in 7 years,  assume that you make no deposits into the account after the initial deposit,

How many types of integer operatiions explain, How many types of Integer Op...

How many types of Integer Operatiions explain? Adding Integers The rules for adding integers are: 1. A positive number plus a positive number equals the sum of the two pos

Share and dividend, #a invests Rs 15000IN COMPANY PAYING 10%WHEN Rs100 SHAR...

#a invests Rs 15000IN COMPANY PAYING 10%WHEN Rs100 SHARE IS SOLD AT A PREMIUM OF Rs 20 after a yearASOLD SHARES AT Rs80 EACHAND INVESTEDPROCEEDS IN Rs75SHARES SELLING AT Rs 100 WZI

Arthemetic progreession, ball are arranged in rows to form an equilateral t...

ball are arranged in rows to form an equilateral triangle .the firs row consists of one abll,the second of two balls,and so on.If 669 more balls are added,then all the balls canbe

Heat loss in a cylindrical pipe, which laws of physics are used to discuss ...

which laws of physics are used to discuss heat loss in a pipe

Scaling and translation for equations, Q. Scaling and translation for equat...

Q. Scaling and translation for equations? Ans. If you have an equation in the form y= f(x) (if you're not familiar with functions, that just means having "y" on the left s

Limits at infinity part ii, Limits At Infinity, Part II :  In this sectio...

Limits At Infinity, Part II :  In this section we desire to take a look at some other kinds of functions that frequently show up in limits at infinity.  The functions we'll be di

Subsets of real numbers, is it true or false that all whole numbers are rat...

is it true or false that all whole numbers are rational numbers

Probability - applications of integrals, Probability - Applications of inte...

Probability - Applications of integrals In this final application of integrals that we'll be looking at we are going to look at probability.  Previous to actually getting into

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd