First and second order derivative, Mathematics

Assignment Help:

Solution: We'll require the first and second derivative to do that.

y'(x) = -3/2x-5/2                                    y''(x) = 15/4x-7/2

Plug these and also the function in the differential equation.

4x2 ((15/4)x-7/2) + 12((-3/2)x-5/2) + 3x-3/2 = 0

(15/4)x-3/2 -18 x-3/2 +3x-3/2 = 0

0 = 0

Thus, y = x-3/2 does suit the differential equation and therefore is a solution. Why after that did I comprise the condition that x > 0?  I did not use such condition anywhere into the work demonstrating that the function would suit the differential equation.

To see why recall that:

y(x) = x-3/2 = 1/√x3

In such form this is clear that we will require avoiding x > 0 at the least as that would offer division by zero.

There is also a general rule of thumb which we are going to run along with in such class. This rule of thumb is as: Start along with real numbers, end by real numbers. Conversely, if our differential equation only comprises real numbers so we don't want solutions which provide complex numbers. Thus, in order to ignore complex numbers we will also require avoiding negative values of x.

Thus, we saw in the last illustration that even although a function may symbolically satisfy a differential equation, due to specific restrictions brought about through the solution we cannot utilize all values of the independent variable and thus, must make a restriction on the independent variable. It will be the case with various solutions to differential equations.

In the last illustration, notice that there are in fact several more possible solutions to the differential equation specified.  For example all of the subsequent are also solutions

265_First and second order derivative.png

I'll put down the details for you to check that such are actually solutions. Specified these illustrations can you come up along with any other solutions to the differential equation? There are actually an infinite number of solutions to that differential equation.

Thus, given about there are an infinite number of solutions to the differential equation in the last illustration we can ask a natural question. Which is the answer that we want or does that issue which answer we use? This question shows us to the subsequent definition in that section.


Related Discussions:- First and second order derivative

Can tan theeta be integrated?, Normal 0 false false false ...

Normal 0 false false false EN-IN X-NONE X-NONE MicrosoftInternetExplorer4

Transpotation, how can you determine trasportation schedule that minimizes ...

how can you determine trasportation schedule that minimizes cost

Trigonmetry, How do I find a bearring using trig?

How do I find a bearring using trig?

Find out the area under the parametric curve, Find out the area under the p...

Find out the area under the parametric curve given by the following parametric equations.  x = 6 (θ - sin θ) y = 6 (1 - cos θ) 0 ≤ θ ≤ 2Π Solution Firstly, notice th

Evaluate the infinite limits of given limits, Evaluate following limits. ...

Evaluate following limits. Solution Therefore we will taking a look at a couple of one-sided limits in addition to the normal limit here. In all three cases notice

Tchebecheffs ineqality theorom, what are the advantages and disadvantages o...

what are the advantages and disadvantages of tchebycheffs inequality theorem

Chi square distribution, Chi Square Distribution Chi square was first ...

Chi Square Distribution Chi square was first utilized by Karl Pearson in 1900. It is denoted by the Greek letter χ 2 . This contains only one parameter, called the number of d

Proof of: limq?0 (cosq -1)/q = 0 trig limit, Proof of: lim q →0 (co...

Proof of: lim q →0 (cos q -1) / q = 0 We will begin by doing the following, lim q →0 (cosq -1)/q = lim q →0 ((cosq - 1)(cosq + 1))/(q (cosq + 1)) = lim q

Area between curves, Area between Curves In this section we will be fi...

Area between Curves In this section we will be finding the area between two curves. There are in fact two cases that we are going to be looking at. In the first case we des

Example of learning to count, A parent shows his child four pencils. He pla...

A parent shows his child four pencils. He places them in a row in front of her and says "one" as he points to the first pencil, "two" as he points to the second one, "three" as he

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd