First and second order derivative, Mathematics

Assignment Help:

Solution: We'll require the first and second derivative to do that.

y'(x) = -3/2x-5/2                                    y''(x) = 15/4x-7/2

Plug these and also the function in the differential equation.

4x2 ((15/4)x-7/2) + 12((-3/2)x-5/2) + 3x-3/2 = 0

(15/4)x-3/2 -18 x-3/2 +3x-3/2 = 0

0 = 0

Thus, y = x-3/2 does suit the differential equation and therefore is a solution. Why after that did I comprise the condition that x > 0?  I did not use such condition anywhere into the work demonstrating that the function would suit the differential equation.

To see why recall that:

y(x) = x-3/2 = 1/√x3

In such form this is clear that we will require avoiding x > 0 at the least as that would offer division by zero.

There is also a general rule of thumb which we are going to run along with in such class. This rule of thumb is as: Start along with real numbers, end by real numbers. Conversely, if our differential equation only comprises real numbers so we don't want solutions which provide complex numbers. Thus, in order to ignore complex numbers we will also require avoiding negative values of x.

Thus, we saw in the last illustration that even although a function may symbolically satisfy a differential equation, due to specific restrictions brought about through the solution we cannot utilize all values of the independent variable and thus, must make a restriction on the independent variable. It will be the case with various solutions to differential equations.

In the last illustration, notice that there are in fact several more possible solutions to the differential equation specified.  For example all of the subsequent are also solutions

265_First and second order derivative.png

I'll put down the details for you to check that such are actually solutions. Specified these illustrations can you come up along with any other solutions to the differential equation? There are actually an infinite number of solutions to that differential equation.

Thus, given about there are an infinite number of solutions to the differential equation in the last illustration we can ask a natural question. Which is the answer that we want or does that issue which answer we use? This question shows us to the subsequent definition in that section.


Related Discussions:- First and second order derivative

Kara brought $23 with her when she went shopping, Kara brought $23 with her...

Kara brought $23 with her when she went shopping. She spent $3.27 for lunch and $14.98 on a shirt. How much money does she have left? The two items that Kara bought must be sub

Algebra, Multiple response question.Zack puts a mug of water ni his microwa...

Multiple response question.Zack puts a mug of water ni his microwave oven. He knows that the final temperature of the water will be a function of the number of seconds he heats the

Student, Patio measures 24 meters square. Patio stone are 30 cm each side. ...

Patio measures 24 meters square. Patio stone are 30 cm each side. How many stones are required to cover the patio?

Utilizes second derivative test to classify critical point, Utilizes the se...

Utilizes the second derivative test to classify the critical points of the function,                                               h ( x ) = 3x 5 - 5x 3 + 3 Solution T

Trigonometry, trigonometric ratios of sum and difference of two angles

trigonometric ratios of sum and difference of two angles

Pde, i find paper that has sam my homework which i need it, in you website...

i find paper that has sam my homework which i need it, in you website , is that mean you have already the solution of that ?

Formula to computing how much lumber to buy, Audrey is creating a increased...

Audrey is creating a increased flowerbed which is 4.5 ft by 4.5 ft. She requires computing how much lumber to buy. If she requires knowing the distance around the flowerbed, which

Children learn maths by experiencing things, Children Learn By Experiencing...

Children Learn By Experiencing Things : One view about learning says that children construct knowledge by acting upon things. They pick up things, throw them, break them, join the

Weight, if an object weighed 11 pounds how many ounces would it weigh

if an object weighed 11 pounds how many ounces would it weigh

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd