Find out deflection under the load, Mechanical Engineering

Assignment Help:

Find out Deflection under the load:

A beam of span 4 m is subject to a point load of 20 kN at 1 m from the left support and a Udl of 10 kN/m over a length of 2 m from the right support.

Find out :

1. Slope at the ends.

2. Slope at the centre.

3. Deflection under the load.

4. Deflection at the centre.

5. Maximum deflection.

Take EI = 20 × 106 N-m2.

Solution

∑ Fy  = 0, so that RA + RB  = 20 + 10 × 2 = 40 kN         --------- (1)

275_Find out Deflection under the load.png

Figure

Taking moments around A,

RB  × 4 = 20 × 1 + 10 × 2 × 3 = 80

RB  = 20 kN                                                      -------- (2)

RA  = 20 kN

M = 20 x - 20 [ x - 1] - 10 [ x - 2] ([ x - 2]/2)

= 20 x - 20 [ x - 1] - 5 [ x - 2]2

EI (d 2 y/ dx2) = M

= 20 x - 20 [ x - 1] - 5 [ x - 2]2       ---------- (4)

 EI (dy / dx )= 10 x2 /3 - (10/3) [ x - 1]2  - (5/3) [ x - 2]3  + C1        ------ (5)

EIy = 10 x3 /3- (10/3) [ x - 1]3  - ( 5/12) [ x - 2]4  + C 1 x + C2  ---------6

at A, x = 0,      y = 0,        C2  = 0

at B, x = 4 m,      y = 0

0 =(10 × 43 )/3- 10 (4 - 1)3 - (5/12)  (4 - 2)4  + C 1 × 4

C1 =- 29.17

EI dy/ dx = 10 x2  - 10 [ x - 1]2  - (5 /3 )[ x - 2]3  - 29.17

 (a)       Slope at A, (x = 0),

θ A = - 29.17 / EI = - 29.17 × 10/(20 × 106)

 = - 1.46 × 10- 3  radians

(b)        Slope at B, (x = 4 m),

EI θB  = 10 × 42  - 10 (4 - 1)2  - 5 (4 - 2)3  - 29.17 = + 27.5

θB = + 1.38 × 10- 3  radians

 (c)       Slope at centre, (x = 2 m),

EI θC  = 10 × 22  - 10 (2 - 1)2  - 29.17

θC  = + 0.04 × 10- 3  radians

Deflection under the load :

EIy = 10 x3 /3- 10 [ x - 1]3  - (5/12)  [ x - 2]4  - 29.17 x

At x = 1 m,

EIy D = (10/3) - 29.17

EIyD  = - 25.84 × 103 × 103/20 × 106

= - 1.29 mm

 (d)      Deflection at the centre :

           x = 2 m

EIy =10 × 23 - (10/3) (2 - 1)3 - 29.17 × 2

yC  = - 1.75 mm

 (e)       Maximum deflection : Let the maximum deflection b/w D and C (x < 2 m).

dy/ dx = 0

10 x2  - 10 ( x - 1)2  - 29.17 = 0

10 x2  - 10 x2  - 10 + 20 x - 29.17 = 0

x = 1.96 m < 2 m

EIy max = (10/3) (1.96)3  - 10 (1.96)3  - 29.17 × 1.96 = - 35

∴ ymax  = - 1.7501 mm


Related Discussions:- Find out deflection under the load

Physical properties of materials, why is physical properties of materials i...

why is physical properties of materials important in design and for industrial application?

Aerospace engineering, An airfoil of surface area 1.5 ft2 is tested for lif...

An airfoil of surface area 1.5 ft2 is tested for lift L in a wind tunnel. At an angle of attack of 7° with standard air of density 0.0024 slugs/ft3 at a speed of 90 ft/sec, the lif

What are the uses of windmill, Windmills were traditionally used for proces...

Windmills were traditionally used for processing grains, later they started to be used for electricity production as well. Windmills can also be used to pump water.

Communication , is effective communication an integral aspect in the mechan...

is effective communication an integral aspect in the mechanical engineering field?

What do you mean by thermil-welding, What do you mean by Thermil-welding ? ...

What do you mean by Thermil-welding ? Describe the process with neat sketch.

Determine the resultant of the loads, Determine the resultant of the loads:...

Determine the resultant of the loads: A system of loads acting on beam is shown in the figure given below. Determine the resultant of the loads. Sol.: Let R be resultant

Define density of a System, Define density and specific volume. DENSITY...

Define density and specific volume. DENSITY (ρ) Density is illustrated as mass per unit volume; Density = mass/ volume; ρ = m/v, kg/m 3 P for Hg = 13.6 × 10 3 kg/m 3

Welding, difference between blow hole and porosity

difference between blow hole and porosity

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd