Fermi level, Electrical Engineering

Assignment Help:

Fermi Level

  • Electrons in solids obey Fermi-Dirac (FD) statistics.
  • This statistics accounts for the indistinguishability of the electrons, their wave nature, and the Pauli Exclusion Principle.
  • The Fermi-Dirac distribution function f(E) of electrons over a range of allowed energy levels at thermal equilibrium can be given by

F (E) = 1/ (1+e(E-EF)/KT)   (7)

where k is Boltzmann's constant (= 8.62 x   eV/K = 1.38 x 10-3 J/K)

  • This gives the probability that an available energy state at E will be occupied by an electron at an absolute temperature T.
  • EF is termed as the Fermi level and is a measure of the average energy of the electrons in the lattice => an extremely important quantity for analysis of device behavior.
  • Note: for (E - EF) > 3kT (known as Boltzmann approximation), f (E) ≈exp [- (E-EF)/kT] this is referred to as the Maxwell-Boltzmann (MB) distribution (followed by gas atoms).
  • The probability that an energy state at EFwill be occupied by an electron is 1/2 at all temperatures.
  • At 0 K, the distribution takes a simple rectangular form, with all states below EF occupied, and all states above EF empty.
  • At T > 0 K, there is a finite probability of states above EF to be occupied and states below EF to be empty.
  • The F-D distribution function is highly symmetric, i.e., the probability f (EF+ΔE) that a state E above EFis filled is the same as the probability [1- f (EF-ΔE)] that a state E below EFis empty.
  • This symmetry about EF makes the Fermi level a natural reference point for the calculation of electron and hole concentrations in the semiconductor.
  • Note: f (E) is the probability of occupancy of an available state at energy E, thus, if there is no available state at E (e.g., within the band gap of a semiconductor), there is no possibility of finding an electron there.
  • For intrinsic materials, the Fermi level lies close to the middle of the band gap (the difference between the effective masses of electrons and holes accounts for this small deviation from the mid gap).
  • In n-type material, the electrons in the conduction band outnumber the holes in the valence band, thus, the Fermi level lies closer to the conduction band.
  • Similarly, in p-type material, the holes in the valence band outnumber the electrons in the conduction band, thus, the Fermi level lies closer to the valence band.
  • The probability of occupation f(E) in the conduction band and the probability of vacancy [1- f(E)] in the valence band are quite small, however, the densities of available states in these bands are very large, thus a small change in f(E) can cause large changes in the carrier concentrations.

 


Related Discussions:- Fermi level

Cro, Ask question #Minimum 100 words accepteddelay line in cro#

Ask question #Minimum 100 words accepteddelay line in cro#

Circuit theory ., it''s 3 assignments and each assignment have 7 questions ...

it''s 3 assignments and each assignment have 7 questions so each assignment have 1 hour when I open it I have only 1 hour to finish it I can show him or her the practice question t

State advantages of washing machine, State advantagesof Washing machine ...

State advantagesof Washing machine Main advantages are that these washing machines are fully automatic (wash programs are fully stored) it makes them easy to use, they are chea

Determine the output waveform of the voltage, Q. The first four harmonics i...

Q. The first four harmonics in the Fourier series of current waveform given by where I m = 15 mA and T = 1 ms. If such a current is applied to a parallel combination of R

When both mt2 and gate are positive, When both  MT 2 and  Gate  are pos...

When both  MT 2 and  Gate  are positive In this  junction  P 1 N 1   and P 2 N 2   are forward  biased whereas junction N 1 P 2 is reverse biased. The gate current flows  thr

Accidents, what are accidents in an organisation

what are accidents in an organisation

The time constant of the circuit, A 20µF capacitor is connected in series w...

A 20µF capacitor is connected in series with a 50 kΩ resistor and the circuit is connected to a 20 V, d.c. supply. Verify: a)  The initial value of the current flowing, b)  T

Explain mesh - current method, Q. Explain Mesh - Current Method? This c...

Q. Explain Mesh - Current Method? This complements the nodal-voltage method of circuit analysis. A set of independent mesh-current variables that implicitly satisfy the KCL equ

BE, WHICH PROJECT WILL BE BEST THESE DAY

WHICH PROJECT WILL BE BEST THESE DAYS

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd