Fermi level, Electrical Engineering

Fermi Level

  • Electrons in solids obey Fermi-Dirac (FD) statistics.
  • This statistics accounts for the indistinguishability of the electrons, their wave nature, and the Pauli Exclusion Principle.
  • The Fermi-Dirac distribution function f(E) of electrons over a range of allowed energy levels at thermal equilibrium can be given by

F (E) = 1/ (1+e(E-EF)/KT)   (7)

where k is Boltzmann's constant (= 8.62 x   eV/K = 1.38 x 10-3 J/K)

  • This gives the probability that an available energy state at E will be occupied by an electron at an absolute temperature T.
  • EF is termed as the Fermi level and is a measure of the average energy of the electrons in the lattice => an extremely important quantity for analysis of device behavior.
  • Note: for (E - EF) > 3kT (known as Boltzmann approximation), f (E) ≈exp [- (E-EF)/kT] this is referred to as the Maxwell-Boltzmann (MB) distribution (followed by gas atoms).
  • The probability that an energy state at EFwill be occupied by an electron is 1/2 at all temperatures.
  • At 0 K, the distribution takes a simple rectangular form, with all states below EF occupied, and all states above EF empty.
  • At T > 0 K, there is a finite probability of states above EF to be occupied and states below EF to be empty.
  • The F-D distribution function is highly symmetric, i.e., the probability f (EF+ΔE) that a state E above EFis filled is the same as the probability [1- f (EF-ΔE)] that a state E below EFis empty.
  • This symmetry about EF makes the Fermi level a natural reference point for the calculation of electron and hole concentrations in the semiconductor.
  • Note: f (E) is the probability of occupancy of an available state at energy E, thus, if there is no available state at E (e.g., within the band gap of a semiconductor), there is no possibility of finding an electron there.
  • For intrinsic materials, the Fermi level lies close to the middle of the band gap (the difference between the effective masses of electrons and holes accounts for this small deviation from the mid gap).
  • In n-type material, the electrons in the conduction band outnumber the holes in the valence band, thus, the Fermi level lies closer to the conduction band.
  • Similarly, in p-type material, the holes in the valence band outnumber the electrons in the conduction band, thus, the Fermi level lies closer to the valence band.
  • The probability of occupation f(E) in the conduction band and the probability of vacancy [1- f(E)] in the valence band are quite small, however, the densities of available states in these bands are very large, thus a small change in f(E) can cause large changes in the carrier concentrations.

 

Posted Date: 1/11/2013 4:51:51 AM | Location : United States







Related Discussions:- Fermi level, Assignment Help, Ask Question on Fermi level, Get Answer, Expert's Help, Fermi level Discussions

Write discussion on Fermi level
Your posts are moderated
Related Questions
What do you mean by Circuit Analysis Techniques?   One simplifying technique often used in complex circuit problems is that of breaking the circuit into pieces of manageable

In this design, there are 24 line finders. If any of the 100 subscribers has to get access to any of 24 two-motion selectors, it is necessary that every line finder is capable of r


Q. What is a positive clipper? Explain its action with the help of a circuit. A positive clipper is the circuit which is used to cut off the positive half cycle. The circuit wi

Q. Draw and explain an RC integrator, with equations RC Integrator is a low pass RC circuit in which the output is taken across capacitor. The low pass RC circuit gives conside

it''s 3 assignments and each assignment have 7 questions so each assignment have 1 hour when I open it I have only 1 hour to finish it I can show him or her the practice question t

Normal 0 false false false EN-IN X-NONE X-NONE MOTOR CONTROL

What is the function of the signal in 8086? BHE signal means Bus High Enable signal. The BHE signal is made low when there is some read or write operation is carried out. i.e.

Q. Basic aspects of electromechanical energy converters? Whereas detailed differences and particularly challenging problems emerge among various machine types, this section bri

what is vector impedense meter