Extreme value theorem, Mathematics

Assignment Help:

Extreme Value Theorem : Assume that f ( x ) is continuous on the interval [a,b] then there are two numbers a ≤ c, d ≤ b so that f (c ) is an absolute maximum for the function and f ( d ) is an absolute minimum for the function.

Thus, if we contain continuous function on an interval [a,b] then we are guaranteed to contain both an absolute maximum & an absolute minimum for the function somewhere within the interval. The theorem doesn't described where they will takes place or if they will take place more than once, however at least it tells us that they do present somewhere.  Sometimes, all that we need to know is that they do present.

This theorem doesn't say anything regarding absolute extrema if we aren't working on an interval. We saw instance of functions above that had both absolute extrema, one absolute extrema, & no absolute extrema while we didn't limit ourselves down to an interval.

The requirement which a function be continuous is also needed in order for us to use the theorem. Consider the case of

                                            f ( x ) =  1 /x2              on    [-1,1]

Following is the graph.

1438_Extreme Value Theorem.png

At x = 0 this function is not continuous as we move in towards zero the function is approaching infinity.  Thus, the function does not contain an absolute maximum.  Note as well that it does have an absolute minimum though.  Actually the absolute minimum takes places twice at both x = -1 & x = 1 .

If we changed the interval just a little to say,

f ( x ) =  1 /x2 on          [ 1/2 , 1]

 

now the function would have both absolute extrema. We might only run into problems if the interval has the point of discontinuity.  If this doesn't then the theorem will hold.

We have to also point out that just because the reason a function is not continuous at a point which doesn't mean that it won't contain both absolute extrema in an interval which contains that point.  Below is the graph of function which is not continuous at a point in the given interval & still has both absolute extrema.

1963_Extreme Value Theorem1.png

This graph is not continuous at x = c , Still it does have both an absolute maximum ( x = b ) and an absolute minimum ( x = c ).  Also note as well that, in this case one of the absolute extrema taken places at the point of discontinuity, however it doesn't required to. The absolute minimum could only have easily been at the other ending point or at some other point interior to the region. The point is here that this graph is not continuous and until now does have both absolute extrema

The point of all this is that we required to be careful to just use the Extreme Value Theorem while the conditions of the theorem are satisfied & not misinterpret the results if the conditions aren't satisfied.

In order to utilize the Extreme Value Theorem we ought to have an interval & the function have to be continuous on that interval. If we don't contain an interval and/or the function isn't continuous on the interval then the function may or may not contain absolute extrema.


Related Discussions:- Extreme value theorem

Algebraic expression, i dont understand what my teacher disccussing thats w...

i dont understand what my teacher disccussing thats why i want to learn for this lesson. i want to ask'' what is the variables?

Positive real exponents, Simplify following and write the answers with only...

Simplify following and write the answers with only positive exponents.  (a) ( x 8.2 y -0.26 z 2 ) 0.5  (b)  (x 3 y -4.1   / x -2.7 ) -3 Solution  (a) (x 8.2

Integrals involving trig functions - integration techniques, Integrals Invo...

Integrals Involving Trig Functions - Integration techniques In this part we are going to come across at quite a few integrals that are including trig functions and few metho

Converting., I need help converting my project fractions into 1

I need help converting my project fractions into 1

Areas of a rectangle, a rectangular field with a path around it measures 1...

a rectangular field with a path around it measures 120m by 50m.if the path is 1m wide all around,(a)find the length of the outer edge of the path.(b)find the area of the path

Right-handed limit, Right-handed limit We say provided we can m...

Right-handed limit We say provided we can make f(x) as close to L as we desire for all x sufficiently close to a and x>a without in fact letting x be a.

Constructing tables versus rote learning maths, CONSTRUCTING TABLES VERSUS ...

CONSTRUCTING TABLES VERSUS ROTE LEARNING :  Ask any adult how she would help a child to acquire simple multiplication facts. There is a very strong possibility that she would say,

How many balls must she select of the same colour, QUESTION (a) A bowl ...

QUESTION (a) A bowl contains ten red balls and ten blue balls. A woman selects balls at random without looking at them. i) How many balls must she select to be sure of havin

Calculus, What is the slope of the line tangent to f(x)=3-2 ln(2x^2+4) at t...

What is the slope of the line tangent to f(x)=3-2 ln(2x^2+4) at the point (4, f(4))

Methods of sampling, a.      Random or probability sampling methods they in...

a.      Random or probability sampling methods they involve: Simple random sampling Systematic sampling Stratified sampling Multi stage sampling   b.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd