Exponential functions, Mathematics

Assignment Help:

Exponential Functions : We'll begin by looking at the exponential function,

                                                             f ( x ) = a x

We desire to differentiate this. The power rule which we looked previous section won't work as which required the exponent to be a fixed number & the base to be a variable. That is accurately the opposite from what we've got with this function.  Thus, we're going to have to begin with the definition of the derivative.

698_exponental function.png

Now, the a x is not influenced by the limit as it doesn't have any h's in it and hence is a constant so far as the limit is concerned.  Therefore we can factor this out of the limit. It specified,

2380_exponental function1.png

Now let's notice as well that the limit we've got above is accurately the definition of the derivative  of f ( x ) = a x  at x = 0 , i.e. f ′ (0) .  Thus, the derivative becomes,

                                                 f ′ ( x ) = f ′ (0)a x

 Thus, we are type of stuck.  We have to know the derivative to get the derivative!

There is one value of a that we can deal along with at this point. There are actually a variety of ways to define e. Following are three of them.


Related Discussions:- Exponential functions

#rounding off, I am the least two digit number which round off to 100?

I am the least two digit number which round off to 100?

Differentiate product rule functions, Differentiate following functions. ...

Differentiate following functions. Solution At this point there in fact isn't a lot of cause to use the product rule.  We will utilize the product rule.  As we add

Prime Ideals, Given a standard 2x3 matrix show the ideal formed by the 2x2 ...

Given a standard 2x3 matrix show the ideal formed by the 2x2 minors is Prime.

Shares and dividends, suresh invested rs.1080 in shares of face value rs.50...

suresh invested rs.1080 in shares of face value rs.50 at rs.54.After receiving dividend on them at 8% he sold them at 52.In each of the transaction he paid 2 % brokerage.Hpw much d

Integration, Integration We have, so far, seen that differential ...

Integration We have, so far, seen that differential calculus measures the rate of change of functions. Differentiation is the process of finding the derivative

Give examples on multiplication rule in probability, Example: Suppose your...

Example: Suppose your football team has 10 returning athletes and 4 new members. How many ways can the coach choose one old player and one new one? Solution:  There are 10 wa

What is slope of a line, What is Slope of a Line ? A line can have a "...

What is Slope of a Line ? A line can have a "steep" slope or a "gradual" slope. slope = rise/run The "rise" is the distance going up or down. The "run" is the distance goin

Example of convergent or divergent - comparison test, Determine if the subs...

Determine if the subsequent series is convergent or divergent. Solution As the cosine term in the denominator doesn't get too large we can suppose that the series term

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd