Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Q. Explain Pulse-Code Modulation?
PCM is the simplest and oldest waveform coding scheme for processing an analog signal by sampling, quantizing, and binary encoding. Figure shows a functional block diagram of a PCM system transmitter. In order to guarantee that the message is band-limited to the spectral extent for which the system is designed, a low-pass filter is introduced. The compressor is rather optional for better performance. Let us assume that the PCM signal is transmitted directly over the baseband channel. Corrupted by the noise generated within the receiver, the PCM signal is shown as the input to the PCM reconstruction function in Figure, which depicts a block diagram of functions (including an optional expandor) needed to receive PCM. The operations of the receiver are basically the inverse of those in the transmitter. The first andmost critical receiver operation is to reconstruct the originally transmitted PCM signal as nearly as possible from the noise-contaminated received waveform. The effect of noise is to be minimized through a careful selection of circuit implementation.
The only knowledge required of the receiver to reconstruct the original PCMsignal iswhether the various transmitted bits are 0s and 1s, depending on the voltage levels transmitted, assuming that the receiver is synchronized with the transmitter. The two levels associated with unipolar pulses of amplitude A are 0 and A, whereas those associated with polar pulses (of amplitudes ±A) are A and -A. It is, of course, better for the receiver if the ratio of the pulse-caused voltage to the noise rms voltage is the largest possible at the time of measurement. Figure shows PCM reconstruction circuits for unipolar, polar, and Manchester waveforms.
Q. What do you mean by Noise? In any communication system there are usually two dominant factors that limit the performance of the system: 1. Additive noise, generated by el
what is the difference between static and induced emf
Regions of operation: Applied voltages Mode E Forward active E C Saturation E > B
A 13.8 kV feed er circui t breaker has a 600:5 multira tio curr ent transform er with charact eristics as show n in Figure 5.11. Th e max - imum load on the feed er is 80 A pri mar
Q. The following data were obtained on a 25- kVA, 2400:240-V, 60-Hz, single-phase distribution transformer: • Open-circuit test with meters on LV side: 240 V, 3.2 A, 165 W •
Voltage, current, and charge control: The collector-emitter current can be seen as being controlled through the base-emitter current (current control), or through the base-emi
How does a Mach-Zehnder Modulator work in Silicon?
Conductors with a temperature rating of 75 degrees C are run in an area with an ambient temperature of 55 degrees C. What would be the de-rating factor that should be applied?
Q. Draw the circuit of a 7805 voltage regulator? Explain the functions of the capacitors used at its input and output sides. Functions of capacitors used at input and outp
Q. What is meant by regulation? The output of most power supplies should be a constant voltage. Unfortunately, this is difficult to achieve. There are two factors that can caus
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd