Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Q. Explain Pulse-Code Modulation?
PCM is the simplest and oldest waveform coding scheme for processing an analog signal by sampling, quantizing, and binary encoding. Figure shows a functional block diagram of a PCM system transmitter. In order to guarantee that the message is band-limited to the spectral extent for which the system is designed, a low-pass filter is introduced. The compressor is rather optional for better performance. Let us assume that the PCM signal is transmitted directly over the baseband channel. Corrupted by the noise generated within the receiver, the PCM signal is shown as the input to the PCM reconstruction function in Figure, which depicts a block diagram of functions (including an optional expandor) needed to receive PCM. The operations of the receiver are basically the inverse of those in the transmitter. The first andmost critical receiver operation is to reconstruct the originally transmitted PCM signal as nearly as possible from the noise-contaminated received waveform. The effect of noise is to be minimized through a careful selection of circuit implementation.
The only knowledge required of the receiver to reconstruct the original PCMsignal iswhether the various transmitted bits are 0s and 1s, depending on the voltage levels transmitted, assuming that the receiver is synchronized with the transmitter. The two levels associated with unipolar pulses of amplitude A are 0 and A, whereas those associated with polar pulses (of amplitudes ±A) are A and -A. It is, of course, better for the receiver if the ratio of the pulse-caused voltage to the noise rms voltage is the largest possible at the time of measurement. Figure shows PCM reconstruction circuits for unipolar, polar, and Manchester waveforms.
what''s robust?
Q. Determine v, i, and the power delivered to elements in the network given in Figure. Check whether conservation of power is satisfied by the circuit.
Q. A 10-hp, 230-V dc shunt motor takes a full- load line current of 40 A. The armature and field resistances are 0.25 and 230 , respectively. The total brush-contact drop is 2 V,
Q. A dc series motor operates at 750 r/min with a line current of 100 A from the 250-V mains. Its armature-circuit resistance is 0.15 and its series-field resistance is 0.1 . As
Voltage and Frequency Control Methods In this control method the ratio of voltage to frequency is kept constant so that the flux remains constant. The voltage at varia
PID controllers are popularly adopted in a wide range of industrial processes. The objective of this design practical is to study the way this PID controller changes system dynamic
Q. Explain the working of Rectifier Circuits? A simple half-wave rectifier using an ideal diode is shown in Figure(a). The sinusoidal source voltage v S is shown in Figure (b)
The critical temperature above which the ferromagnetic materials lose their magnetic property is known as (A) Hysteresis. (B) Curie point.
reflections, journey about the subject solid mensuration
An induction motor takes 350 kW at 0.8 power factor lagging while driving a load. When an overexcited synchronous motor taking 150 kW is connected in parallel with the induction mo
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd