Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Q. Explain Pulse-Code Modulation?
PCM is the simplest and oldest waveform coding scheme for processing an analog signal by sampling, quantizing, and binary encoding. Figure shows a functional block diagram of a PCM system transmitter. In order to guarantee that the message is band-limited to the spectral extent for which the system is designed, a low-pass filter is introduced. The compressor is rather optional for better performance. Let us assume that the PCM signal is transmitted directly over the baseband channel. Corrupted by the noise generated within the receiver, the PCM signal is shown as the input to the PCM reconstruction function in Figure, which depicts a block diagram of functions (including an optional expandor) needed to receive PCM. The operations of the receiver are basically the inverse of those in the transmitter. The first andmost critical receiver operation is to reconstruct the originally transmitted PCM signal as nearly as possible from the noise-contaminated received waveform. The effect of noise is to be minimized through a careful selection of circuit implementation.
The only knowledge required of the receiver to reconstruct the original PCMsignal iswhether the various transmitted bits are 0s and 1s, depending on the voltage levels transmitted, assuming that the receiver is synchronized with the transmitter. The two levels associated with unipolar pulses of amplitude A are 0 and A, whereas those associated with polar pulses (of amplitudes ±A) are A and -A. It is, of course, better for the receiver if the ratio of the pulse-caused voltage to the noise rms voltage is the largest possible at the time of measurement. Figure shows PCM reconstruction circuits for unipolar, polar, and Manchester waveforms.
Define Characteristics of Discrete Time Systems - Linear? A discrete-time system is said to be linear if it obeys the principles of superposition. That is, the response of a li
SUB Subtract Instruction This instruction is used to subtract the contents of any register or memory location from the contents of accumulator. There are two formats as
i need matlab codes for the minimum cell cost method to start the initial feasible solution and the stepping stone method to find the optimum value
Electrical circuits and systems : Electrical systems allow energy to be conveniently delivered from the point of supply to the point of application - e.g. electric railways, ca
MATLAB assignment
we work as a group on Automoted guided vehicles project, with 2 vehicles one is leading and the other is guided and following the first one, i was assigned to write an obstacle avo
Explain iron and silicon iron alloys. Iron: Galvanised steel and iron wires that are usually used for earth conductor in low voltage distribution systems may also be utilize
What is meant by doping? How does it affect a semiconductor? Doping: The process through which an impurity is added to semiconductor is termed as doping. A semiconductor to th
Q. (a) Let a unit impulse of voltage v(t) = δ(t) be applied to a series combination of R = 20 and L = 10 mH. Determine the current i(t)in the series circuit. (b) Repeat (a) for
Q. (a) Show by applying Ampere's circuital law that themagnetic field associated with a long straight, current-carrying wire is given by B φ = µ 0 I/(2πr), where the subscript φ d
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd