Explain ferrites suitability for high frequency application, Electrical Engineering

Assignment Help:

Explain Suitability of ferrites for high frequency application.

Ferrites are extensively used in micro wave equipments and in computers. Ferrites are advantageous at high frequencies due to low eddy current losses. Ferromagnetic alloys cores and metals have to be eliminated in order to decrease the losses. At high frequencies laminations  should  be  so  thin  therefore  both  fabrication  and  assembly  become  costly processes. At such frequencies a duet core that consists of fine particles of ferromagnetic material insulated from each other may be utilized. But these have the disadvantage of diluting the ferromagnetic martial and reducing the effective relative permeability. Further disadvantage is that the flux density varies by the core because of non-uniform spacing of the particle. At certain points where there is greater concentration of particles; therefore flux density is probable to be higher entailing larger hysteresis losses.

For this purposes, Ferrites are used for the high frequency application

2163_Hysterisis Loop of Magnetic Materials.png

Hysterisis Loop of Magnetic Materials

A magnetic material is composed of magnetic dipoles oriented in random direction is zero. If a magnetic material is magnetized by applying a magnetizing force (i.e. MI), the magnetic dipoles begin orienting themselves towards applied magnetic force. As the magnetizing force is raised by increasing the magnetizing force, more and more of the magnetic dipoles become oriented. A stage comes while almost whole magnetic dipoles becomes oriented and as any increase in magnetizing force (MI) does not result in any increase in the dipoles getting oriented. Thus the magnetic field is established in the forward direction.

This stage of magnetization is termed as magnetic saturation as shown in figure. If the magnetizing force is slowly reduced this is found that the magnetic dipoles again get de-oriented, the rate of de-orientation now being small less than the rate of orientation at an exact magnetizing forces. Therefore the demagnetizing curve does not retrace back the magnetization curve as shown in figure (ii)

In figure (ii), OA is the magnetization curve and AB is the demagnetization curve. This may be seen that even while the magnetization force is reduced to zero, a small magnetization is left in the magnetic material. In the figure OB represents the residual magnetization. When the magnetizing force is applied now in the negative direction, a small amount of magnetizing force OC will be spent in fully de-magnetizing the material.  Further increase in magnetizing force will orient the magnetic dipoles in the opposite direction therefore establishing a magnetic field into the reverse direction.

While the magnetizing force is reduced to zero and after that again increased in the forward direction therefore the magnetization curve will follow the path DEA. The whole curve ABCDEA is termed as the hysteresis loop.


Related Discussions:- Explain ferrites suitability for high frequency application

What is maximum memory size that can be addressed by 8086, What is the maxi...

What is the maximum memory size that can be addressed by 8086? In 8086, an memory location is addressed by 20 bit address and the address bus is 20 bit address and the address

Two-level system - princeton, Conceive a system composed of a very large nu...

Conceive a system composed of a very large number N of distinguishable atoms at rest and mutually noninteracting, each of which has only two (nondegenerate) energy levels:0,ε>0 Let

Jump instruction - branch operations , Jump Instruction There are two ...

Jump Instruction There are two types of jump  instruction unconditional jump conditional jumps

#t voice controlled mobile base, The aim of this project is to design, co...

The aim of this project is to design, construct and build a motorised base driven by two small dc motors. The motor drives are two H-bridges. The switching devices in these bridges

Ohmic region operation, Q. In a depletion MOSFET for which V P = 3 V and I...

Q. In a depletion MOSFET for which V P = 3 V and I DSS = 11mA, the drain current is 3mA when v DS is set at the largest value that will maintain ohmic region operation. Find v G

Potentiometric type dvm, Potentiometric type DVM: A potentiometric type of...

Potentiometric type DVM: A potentiometric type of DVM, employs voltage comparison technique. In this DVM the unknown Voltage is compared with a reference voltage value is fixed by

Hamming window and zero padding, This question investigates the effect of e...

This question investigates the effect of extending the data set with zero-padding & of the appropriate time in the workflow to apply a window function. To get finer resolution in t

Buck boost converter - power supplies , Buck Boost Converter The outpu...

Buck Boost Converter The output  of buck boost  regulator may be  less than  or greater than the  input  voltage. Since  the polarity of output  voltage  is opposite  to that

What is transient program area, What is TPA (transient program area)? T...

What is TPA (transient program area)? The memory system is divided in three major parts: transient program area, System is and XMS that is extended memory system.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd