Example of linear equations, Mathematics

Example of Linear Equations:

Solve the equation 2x + 9 = 3(x + 4).


Step 1. Using Axiom 2, subtract 3x and 9 from both sides of the equation.

2x + 9 = 3(x + 4)

2x + 9 - 3x - 9 = 3x + 12 - 3x - 9

-x = 3

Step 2. Using Axiom 4, divide both sides of the equation by -1.

-x/-1 = =3/-1

x = -3

Step 3. Check the root.

2(-3) + 9 = -6 + 9 = 3

3[(-3) + 4] = 3(1) = 3

The root checks.

These similar steps can be used to solve equations which involve various unknowns.  The result is an expression for one of the unknowns in terms of the other unknowns.   This is particularly significant in solving practical problems.  Frequent the known relationship between various physical quantities  must  be  rearranged  in  sequence  to  solve  for  the  unknown  quantity.   The steps are performed so in which the unknown quantity is isolated on the left-hand side of the equation.

Posted Date: 2/9/2013 2:33:00 AM | Location : United States

Related Discussions:- Example of linear equations, Assignment Help, Ask Question on Example of linear equations, Get Answer, Expert's Help, Example of linear equations Discussions

Write discussion on Example of linear equations
Your posts are moderated
Related Questions
Illustration : Solve the following IVP. Solution: First get the eigenvalues for the system. = l 2 - 10 l+ 25 = (l- 5) 2 l 1,2 = 5 Therefore, we got a

what value of k is he sequence 2k+4,3k-7,k+12 are in an arithmetic sequence is

Example of Regression Equation An investment company advertised the sale of pieces of land at different prices. The given table shows the pieces of land their costs and acreag

Need a problem solved

DEVELOPING AN UNDERSTANDING :  The other day I was showing the children's book '203 Cats' to my 7-year-old niece. She had recently learnt how to write large numerals in her school

1) find the maxima and minima of f(x,y,z) = 2x + y -3z subject to the constraint 2x^2+y^2+2z^2=1 2)compute the work done by the force field F(x,y,z) = x^2I + y j +y k in moving

Definition 1: Given the function f (x ) then 1. f ( x ) is concave up in an interval I if all tangents to the curve on I are below the graph of f ( x ) . 2. f ( x ) is conca

When three quantities a, b and c are in G.P., then the geometric mean "b" is calculated as follows. Since these quantities are in G.P., the r

how can i build Y=2x