Example of inflection point-differential equation, Mathematics

Example of inflection point

Determine the points of inflection on the curve of the function

y = x3

Solution

The only possible inflexion points will happen where

(d2y)/( dx2)   = 0

From specified function as:

(dy)/(dx) = 3x2 and (d2y)/( dx2)   = 6x

Equating the second derivative to zero, we include

 6x = 0 or x = 0

We test whether the point at that x = 0 is an inflexion point as follows

While x is slightly less than 0, ((d2y)/(dx2)) < 0; it means a downward concavity

While x is slightly larger than 0, ((d2y)/(dx2)) > 0;  it means an upward concavity

Hence we have a point of inflexion at point x = 0 since the concavity of the curve changes as we pass from the left to the right of x = 0

Illustration:-

                                 924_Example of inflection point.png

 

maximize and the revenue

1. The per week revenue Sh. R of a small company is specified by

 R = (14 + 81x - (x3/12)) whereas x is the number of units produced.

Required

i.          Find out the number of units that maximize the revenue

ii.         Find out the maximum revenue

iii.        Find out the price per unit that will maximize revenue

Solution

i. To determine maximum or minimum value we needs differential calculus as given below:

R = (14 + 81x - (x3/12))

(dR)/(dx) = 81 - (1/12) . (3x2)

(d2R)/(dx2) = 0 - (1/12) . (3.2x) = -(x/2)

Put (dR)/(dx) = 0 that is 81 - (1/4)x2 = 0

That gives x = 18 or x = -18

(d2R)/(dx2) = -(x/2)

Hence when x = 18;

(d2R)/(dx2) = -9

That is (-) negative indicating a maximum value.

Hence at x = 18, the value of R is a maximum. Correspondingly at x = -18, the value of R is a minimum. Thus, the number of units that maximize the revenue = 18 units

i. The maximum revenue is given as

            R = 14 + 81 + 18 - ((18)3)/12

                        = Shs. 986

ii.The price per unit to maximize the revenue is given as:

986/18 = 54.78 or Shs.54.78

Posted Date: 2/15/2013 6:51:53 AM | Location : United States







Related Discussions:- Example of inflection point-differential equation, Assignment Help, Ask Question on Example of inflection point-differential equation, Get Answer, Expert's Help, Example of inflection point-differential equation Discussions

Write discussion on Example of inflection point-differential equation
Your posts are moderated
Related Questions
What is a Function, Anyway? Domain? Range? Next time you're at a fast-food restaurant, take a look at the price list. It may look something like this: • Hamburger.............

Properties of Logarithms 1. log a xy = log a x + log a y 2.  = log a x - log a y 3. log a x n   = n log

R is called as a transitive relation if (a, b) € R, (b, c) € R → (a, c) € R In other terms if a belongs to b, b belongs to c, then a belongs to c.         Transitivity be uns

solve and graph the solution set 7x-4 > 5x + 0

find the area of the irregular shape 2cm 4cm 4cm 2cm 5cm 5cm

Rajun uses 2/3 of a carton of milk to make a pancake. The volume of milk he uses is 800ml. calculate the volume, in l, of a milk in carton?

All differential equations will doesn't have solutions thus it's useful to identify ahead of time if there is a solution or not. Why waste our time trying to get something that doe


sin10+sin20+sin30+....+sin360=0 sin10+sin20+sin30+sin40+...sin180+sin(360-170)+......+sin(360-40)+sin(360-30)+sin(360-20)+sin360-10)+sin360 sin360-x=-sinx hence all terms cancel

Assume that   i)  Determine all the roots of f(x) = 0. ii)  Determine the value of k that makes h continuous at x = 3. iii)  Using the value of k found in (ii), sh