## Example of inflection point-differential equation, Mathematics

Assignment Help:

Example of inflection point

Determine the points of inflection on the curve of the function

y = x3

Solution

The only possible inflexion points will happen where

(d2y)/( dx2)   = 0

From specified function as:

(dy)/(dx) = 3x2 and (d2y)/( dx2)   = 6x

Equating the second derivative to zero, we include

6x = 0 or x = 0

We test whether the point at that x = 0 is an inflexion point as follows

While x is slightly less than 0, ((d2y)/(dx2)) < 0; it means a downward concavity

While x is slightly larger than 0, ((d2y)/(dx2)) > 0;  it means an upward concavity

Hence we have a point of inflexion at point x = 0 since the concavity of the curve changes as we pass from the left to the right of x = 0

Illustration:-

maximize and the revenue

1. The per week revenue Sh. R of a small company is specified by

R = (14 + 81x - (x3/12)) whereas x is the number of units produced.

Required

i.          Find out the number of units that maximize the revenue

ii.         Find out the maximum revenue

iii.        Find out the price per unit that will maximize revenue

Solution

i. To determine maximum or minimum value we needs differential calculus as given below:

R = (14 + 81x - (x3/12))

(dR)/(dx) = 81 - (1/12) . (3x2)

(d2R)/(dx2) = 0 - (1/12) . (3.2x) = -(x/2)

Put (dR)/(dx) = 0 that is 81 - (1/4)x2 = 0

That gives x = 18 or x = -18

(d2R)/(dx2) = -(x/2)

Hence when x = 18;

(d2R)/(dx2) = -9

That is (-) negative indicating a maximum value.

Hence at x = 18, the value of R is a maximum. Correspondingly at x = -18, the value of R is a minimum. Thus, the number of units that maximize the revenue = 18 units

i. The maximum revenue is given as

R = 14 + 81 + 18 - ((18)3)/12

= Shs. 986

ii.The price per unit to maximize the revenue is given as:

986/18 = 54.78 or Shs.54.78

#### Marketing, In a 2500 word report do the market analysis of China. Under thi...

In a 2500 word report do the market analysis of China. Under this you have to explain: - What are the advantages and disadvantages for foreign company to set up its business cent

#### Assisnment, How a student of mathematics of b.sc can make an assignment on...

How a student of mathematics of b.sc can make an assignment on topic of asymptotes?

#### Word problem, A jet flew at an average speed of 480mph from Point X to Poin...

A jet flew at an average speed of 480mph from Point X to Point Y. Because of head winds, the jet averaged only 440mph on the return trip, and the return trip took 25 minutes longer

#### Eliminate the parameter from the set of parametric equations, Eliminate the...

Eliminate the parameter from the subsequent set of parametric equations. X = t 2 + t Y = 2t - 1 Solution: One of the very easy ways to eliminate the parameter is to

#### Unitary methods, john walked to school at an average speed of 3 miles/hr a...

john walked to school at an average speed of 3 miles/hr and jogged back along the same route at 5miles/hr. if his total time was 1 hour, what was the total number of miles in the

1+1

#### Linear Programming, describe phases of operations research study ?

describe phases of operations research study ?

#### Shares and dividends, I have a maths assignment as- Use a newspaper to stud...

I have a maths assignment as- Use a newspaper to study and give a report on shares and dividends.

#### Detremine the rectilinear distance, Rectilinear Distance (Total Travel Dist...

Rectilinear Distance (Total Travel Distance per Day Using Rectilinear Distance): It can be computed through using following formula: d(X, Pi) = |x - ai| + |y - bi| (Source: T

#### Unit circle, Unit circle A circle centered at the origin with radius 1 ...

Unit circle A circle centered at the origin with radius 1 (i.e. this circle) is called as unit circle.  The unit circle is very useful in Trigonometry. (b) x 2 + ( y - 3) 2