Example of exponential growth, Algebra

Assignment Help:

Example The growth of a colony of bacteria is provided by the equation,

                                           Q = Q e0.195 t

If there are at first 500 bacteria exist and t is given in hours find out each of the following.

(a) How several bacteria are there after a half of a day?  

(b) How much time will it take before there are 10000 bacteria in the colony?  

Solution

Following is the equation for this starting amount of bacteria.

                                               Q =500 e0.195 t

(a) How several bacteria are there after a half of a day?

In this case if we desire the number of bacteria after half of a day we will have to use t = 12 as t is in hours.  Thus, to obtain the answer to this part we only need to plug t into the equation.

                         Q = 500 e0.195(12)  = 500 (10.3812365627 ) =5190.618

Thus, as a fractional population doesn't make any sense we'll say that after half of day there are 5190 of the bacteria present.

 (b) How much time will it take before there are 10000 bacteria in the colony?

Do not make the mistake of supposing that it will be approximately 1 day for this answer depends on the answer to the previous part. Along exponential growth things just don't work that way as we'll illustrate.  To answer this part we will have to solve the following exponential equation.

                                                          10000 = 500 e0.195 t

Let's do that.

 10000/500  =e 0.195 t

20 = e0.195 t

ln 20 = ln e0.195 t

 

ln 20 = 0.195t  ⇒ t = ln 20 / 0.195 =15.3627

Thus, it only takes approximately 15.4 hours to attain 10000 bacteria and not 24 hours if we only double the time from the first part. In other terms, be careful!


Related Discussions:- Example of exponential growth

Expressions and inequlites, A blue whale gains 2.3 tons a month for the fir...

A blue whale gains 2.3 tons a month for the first year of life. If a blue whale weighed 15 tons at birth, how much will it weigh on its first birthday?

True inequality, We have to give one last note on interval notation before ...

We have to give one last note on interval notation before moving on to solving inequalities. Always recall that while we are writing down an interval notation for inequality that t

Quadratic equations, Before proceeding with this section we have to note th...

Before proceeding with this section we have to note that the topic of solving quadratic equations will be covered into two sections. It is done for the advantage of those viewing t

Process for graphing a polynomial, 1. Find out all the zeroes of the polyno...

1. Find out all the zeroes of the polynomial and their multiplicity.  Utilizes the fact above to find out the x-intercept which corresponds to each zero will cross the x-axis or on

Simplify, x2(x-2)-3 y3(xy2)-2/(x2)3 y-2(x2)2

x2(x-2)-3 y3(xy2)-2/(x2)3 y-2(x2)2

Exponetial growth and decay, in the year 2000, radio stations numbered 220....

in the year 2000, radio stations numbered 220. The number of stations has since increased by approximatly 14.3% per year. Let x represent the number of years since 2000,and y repre

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd