Example of equations with radicals, Algebra

Assignment Help:

Solve x =√(x+ 6) .

Solution

In this equation the fundamental problem is the square root.  If it weren't there we could do the problem.  The whole procedure that we're going to go through here is set up to remove the square root. Though, as we will see, the steps which we're going to take can in fact cause problems for us.  Thus, let's see how this all works.

Let's notice that if we just square both of sides we can make the square root go away.  Let's do that & see what happens.

( x)2  = ( √(x + 6) )2

x2  = x +6

x2 - x - 6 =0

( x - 3) ( x + 2) =0       ⇒x = 3,      x = -2

Upon squaring both of sides we see that we get a factorable quadratic equation which gives us two solutions x = 3 and x = -2 .

Now, for no clear reason, let's do something which actually we haven't done since the section on solving linear equations. Let's check our answers. Recall as well that we have to check the answers in the original equation! That is very significant.

Let's first check    x = 3

1915_Example of Equations with Radicals.png

      3 = √9        OK

Thus x = 3 is a solution.  Now let's check x = -2 .

                                                      971_Example of Equations with Radicals1.png   NOT OK

We have a problem.  Remember that square roots are always +ve and thus x = -2 does not work in original equation.  Here one possibility is that we commit a mistake somewhere. We can go back & look though and we'll rapidly see that we haven't made a mistake.

Thus, what is the deal?  Recall that our first step in the solution procedure was to square both sides.  Notice that if we plug x = -2 into the quadratic we solved out it would actually be a solution to that.  While we squared both sides of the equation actually we changed the equation and in the procedure introduced a solution that is not a solution to the original equation.

With these problems this is critically important that you check your solutions as it will often happen. While this does we only take the values which are actual solutions to the original equation.

Thus, the original equation had a single solution x = 3.


Related Discussions:- Example of equations with radicals

Solving system graphically, #questionSolve the system graphically. If the s...

#questionSolve the system graphically. If the system has an infinite number of solutions, use set builder notation to write the solution set. If the system has no solution, state t

Polynomials, please help me understand polynomials- i get the small problem...

please help me understand polynomials- i get the small problems but i dont understand larger ones

DEMAND AND SUPPLY, Qs1=-7+P1 (2) Qd1=15-P1+2P2+P3 (3) Qs1=Qd1

Qs1=-7+P1 (2) Qd1=15-P1+2P2+P3 (3) Qs1=Qd1

Equations, how to to a equations ?

how to to a equations ?

Excel, Ask question1 MATH 1110 – Mathematics for I.T. Follow the instructio...

Ask question1 MATH 1110 – Mathematics for I.T. Follow the instructions given below to submit your work. ? Use MS Word to open a new solution file. ? Write your name, Student Id and

Algebraic expression, how to convert algebraic expression word to number TH...

how to convert algebraic expression word to number THREE MORE THAN A NUMBER

Logaritmos, I want to know the solution of this problem: log2.log3(x+2)=2

I want to know the solution of this problem: log2.log3(x+2)=2

Slope, Im an 8th grader and my grades arent the best. Im really having trou...

Im an 8th grader and my grades arent the best. Im really having trouble with slope. I just dont get it all that well.

Math, how do you do scientific notation

how do you do scientific notation

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd