Example calculation of entropy, Computer Engineering

Example Calculation:

If we see an example we are working with a set of examples like S = {s1,s2,s3,s4} categorised with a binary categorisation of positives and negatives like that s1  is positive and the rest are negative. Expect further there that we want to calculate the information gain of an attribute, A, and  A can take the values {v1,v2,v3} obviously. So lat in finally assume that as: 

1745_Example Calculation of Entropy.png

Whether to work out the information gain for A relative to S but we first use to calculate the entropy of S. Means that to use our formula for binary categorisations that we use to know the proportion of positives in S and the proportion of negatives. Thus these are given such as: p+ = 1/4 and p- = 3/4. So then we can calculate as: 

Entropy(S) = -(1/4)log2(1/4) -(3/4)log2(3/4) = -(1/4)(-2) -(3/4)(-0.415) = 0.5 + 0.311

= 0.811 

Now next here instantly note that there to do this calculation into your calculator that you may need to remember that as: log2(x) = ln(x)/ln(2), when ln(2) is the natural log of 2. Next, we need to calculate the weighted Entropy(Sv) for each value v = v1, v2, v3, v4, noting that the weighting involves multiplying by (|Svi|/|S|). Remember also that Sv  is the set of examples from S which have value v for attribute A. This means that:  Sv1 = {s4}, sv2={s1, s2}, sv3 = {s3}. 

We now have need to carry out these calculations: 

(|Sv1|/|S|) * Entropy(Sv1) = (1/4) * (-(0/1)log2(0/1) - (1/1)log2(1/1)) = (1/4)(-0 -

(1)log2(1)) = (1/4)(-0 -0) = 0 

(|Sv2|/|S|) * Entropy(Sv2) = (2/4) * (-(1/2)log2(1/2) - (1/2)log2(1/2))

                                      = (1/2) * (-(1/2)*(-1) - (1/2)*(-1)) = (1/2) * (1) = 1/2 

(|Sv3|/|S|) * Entropy(Sv3) = (1/4) * (-(0/1)log2(0/1) - (1/1)log2(1/1)) = (1/4)(-0 -

(1)log2(1)) = (1/4)(-0 -0) = 0 

Note that we have taken 0 log2(0) to be zero, which is standard. In our calculation,

we only required log2(1) = 0 and log2(1/2) =  -1. We now have to add these three values together and take the result from our calculation for Entropy(S) to give us the final result: 

Gain(S,A) = 0.811 - (0 + 1/2 + 0) = 0.311 

Now we look at how information gain can be utilising in practice in an algorithm to construct decision trees.

Posted Date: 1/11/2013 6:43:07 AM | Location : United States

Related Discussions:- Example calculation of entropy, Assignment Help, Ask Question on Example calculation of entropy, Get Answer, Expert's Help, Example calculation of entropy Discussions

Write discussion on Example calculation of entropy
Your posts are moderated
Related Questions
What Is The Difference Between ViewState and SessionState? View State persist the values of controls of certain page in the client (browser) when post back operation done. When

Name the processes of OOM In OOM the modelling passes through the given processes: System Analysis System Design Object Design, and Final Implementation.

Q. Microcomputer - Controlled Breadmaking Machine? Figure shows a simplified schematic diagram of a microcomputer-controlled breadmaking machine. A microcomputer along with its

Q. How can we design Radio Button? Radio buttons are used when only one out of group of options is to be chosen. In the illustration code we have put a line break after every b

What is the necessity of an interface?  Any device that has to be linked to a CPU requires an interface. This takes care of the mismatch in speed, data and electrical character

Illustrate the list of key differences to word processors The following is a list of key differences to word processors: -  Most word processors force users to work on a doc

Q. What do you mean by Loader? Loader is a program that assigns absolute addresses to program. These addresses are produced by adding the address from where program is loaded i

udp connection establishment and termintion

What are the different types of layers in TCP/IP protocol stack? Layers into the TCP/IP protocol architecture are as given below: • Application Layer, • Host-to-Host Tra

How to get the column count of a report? SY-LINSZ system variable gives the column count (line size) and SY-LINCT for line count.