Evaluate the acceleration of the three weights, Mechanical Engineering

Evaluate the acceleration of the three weights:

A system of weight connected by the string passing over pulleys A and B is shown in figure given below. Find out acceleration of the three weights. Assume the weightless string and ideal condition for the pulleys.

Sol: As strings are weightless and ideal conditions prevail, thus the tensions in string passing over pulley A will be same. The tensions in string passing over pulley B will be same. But tensions in the strings passing over pulley A and over pulley B will be different as shown in the given figure.

Let T1  = Tension in string passing over pulley A
T2  = Tension in string passing over pulley B

One end of string passing over pulley A is connected to the weight 15N, and other end is connected to pulley B. As weight 15N is more than weights (6 + 4 = 10N), thus weight 15N will move downwards, while pulley B will move upwards. The acceleration of weight 15N and of pulley B will be same.

Let, a  = Acceleration of block 15N in the downward direction1  = Acceleration of 6N downward with respect to the pulley B.

Then acceleration of weight 4N with respect to the pulley B = a1  in upward direction.

1385_Evaluate the acceleration of the three weights.png

The absolute acceleration of weight 4N,

= Acceleration of 4N with respect pulley B + Acceleration of pulley B. = a1 + a (upward)

(as both the acceleration are in upward direction, total acceleration will be the sum of the two accelerations)

Absolute acceleration of weight 6N,

= Acceleration of 6 with respect to pulley B + Acceleration of pulley B.

= a1 - a (downward)

(As a1 is acting downward while a is acting upward. Thus total acceleration in downward direction)

Consider motion of weight 15N Net downward force = 15 - T1

Using F = ma,

15 - T1 = (15/9.81)a                                                                                                                         ...(1)

Consider motion of weight 4N

Net downward force = T2  - 4

Using F = ma,

T2  - 4 = (4/9.81)(a + a1)                                                                                                               ...(2)

Consider the motion of weight 6N

Net downward force = 6 - T2

Using F = ma,

6 - T2 = (6/9.81)(a1 - a)                                                                                                                ...(3)

Consider motion of pulley B,

T1=2T2                                                                                                                                         ...(4)

Adding equation (2) and (3)

2 = (4/9.81)(a + a1) + (6/9.81)(a1 - a)

9.81 = 5a1 - a                                                                                                                               ...(5)

Multiply equation (2) by 2 and put value of equation (4),

T1  - 8 = (8/9.81)(a1  + a)                                                                                                                ...(6)

Add equation (1) and (6), we get

15 - 8 = (15/9.81)a + (8/9.81)(a1  + a)

23a + 8a1 = 7 X 9.81                                                                                                                           ...(7)

Multiply equation (5) by 23 and add with equation (7),

a1 = 2.39m/sec2                                                                                                                         .....ANS

Putting value of a1 in equation (5),

a = 2.15m/sec2                                                                                                                            ....ANS

Acceleration of weight 15N = a = 2.15m/sec2                                                                   ......ANS

Acceleration of weight 6N = a = 0.24m/sec2                                                                     .......ANS

Accelerationofweight  4N = a = 4.54m/sec2                                                                      .......ANS


Posted Date: 10/20/2012 12:47:51 AM | Location : United States







Related Discussions:- Evaluate the acceleration of the three weights, Assignment Help, Ask Question on Evaluate the acceleration of the three weights, Get Answer, Expert's Help, Evaluate the acceleration of the three weights Discussions

Write discussion on Evaluate the acceleration of the three weights
Your posts are moderated
Related Questions
Q.Show the procedure of spot welding ? The steps involved in making a spot weld are listed below and shown but before spot welding one must make sure that (i) The job is clea

Space mass and weight: The geometric region occupied by bodies called as space. When body changes its position w. r.t. the other bodies, then body is known to be in motion.

Casting processes Casting processes. Here, the metal in the molten state is poured into a mould and allowed to solidify into a shape. The mould may be expendable or permanent.

If Low Resistance or Very High Current in Primary Coil Circuit Causes of Problem Remedy Primary ignition coil short circuited

AskTask 2 (3 questions) Material engineers should be conversant of various materials, their properties, manufacturing process involved, environmental issues, monetary issues and mo

degrees of freedom of a planar mechanism

Parallelogram law of forces: The law of parallelogram is used to determine the resultant of two forces acting at the point of a rigid body in plane and is inclined to each o

A diluted polymer solution with a density of 1130 kg/m3 was extruded through a capillary tube of 3.5 mm internal diameter and 1 m long. The following results were obtained at 25°C.

Coplanar and Non-Coplanar Forces: In this unit, you have learnt to identify the different systems of forces. You have also learnt the many techniques of adding the forces to g

An ideal gas is heated at fixed volume until its temperature is 3 times the original temperature. It is then expanded isothermally till it reaches original pressure. The gas is t