Equations with more than one variable, Algebra

Here we'll be doing is solving equations which have more than one variable in them.  The procedure that we'll be going through here is very alike to solving linear equations that is one of the causes why this is being introduced at this instance. However there is one exception to that. Occasionally, we will see, the ordering of the procedure will be different for some problems.  Here is the procedure in the standard order.

1. Multiply both of the sides by the LCD to clear out any fractions.

2. Do simplify both of the sides as much as possible. It will frequently mean clearing out parenthesis and the like.

3. Move all terms having the variable we're solving for to one side & all terms that don't have the variable to opposite side.

4. Get a single point of the variable we're solving out for in the equation.  For the sort of problems which we'll be looking at here it will almost always be completed by simply factoring the variable out of each of the terms.

5. Divide through the coefficient of the variable. This step will make sense since we work with problems.  Note down as well that in these problems the "coefficient" will possibly contain things other than numbers.

Usually it is easiest to see just what we're going to be working with & just how they work along an example. We will also give the basic procedure for solving these inside the first instance.

Posted Date: 4/6/2013 3:52:40 AM | Location : United States







Related Discussions:- Equations with more than one variable, Assignment Help, Ask Question on Equations with more than one variable, Get Answer, Expert's Help, Equations with more than one variable Discussions

Write discussion on Equations with more than one variable
Your posts are moderated
Related Questions


An object 4.8 feet tall casts a shadow that is 14.4 feet long. How long in feet would the shadow be for an object which is 13.2 feet tall?

In the earlier section we looked at using factoring & the square root property to solve out quadratic equations. The problem is that both of these methods will not always work. Not

The city of Eden would like to put in a new street that runs parallel to Harrington Highway because of traffic issues. The equation of Harrington Highway is y = -2x + 7. What wil

write an algebraic expression: Kelly is 2 years younger than 3 times Tracy''s age

Perpendicular to y=3x-2 and through the point (6,4)

2x+y/x+3y=-1/7and 7x+36y=47/3 hence find p if xy=p=x/y

An artifact was found and tested for its carbon-14 content. If 86% of the original carbon-14 was still present, what is its probable age (to the nearest 100 years)? (Carbon-14 has

what are the solutions of [x+6]_> 5? write the solution as either the union or the intersection of two sets