Engineering materials and engineering materials properties, Physics

Engineers and technologist engage themselves in the design and manufacturing of machine like latches, engines, motors, generators, bulldozers etc. And in the fabrication of vehicles like aircraft, trains, automobiles. When we analyze the products of engineering industry for their constituent materials, we find that the materials that are primarily used are solids, fluids like water, oil and steam. But solid with their properties manipulated with the variety of ways dominate the industry. Solid materials may be conveniently grouped into four different groups. It is possible to be conversant with the thousands of engineering materials, unless we are guided by some broad and some generalization. This book deals with such materials that are commonly used in electrical engineering field. The decision upon the broad classification of materials in this book is done by first listing the functions of electrical engineering materials.

TYPE

PROPERTIES

TYPICAL EXAMPLES

METALS

Typical metallic cluster ,high thermal and electrical conductivity ductile, high strength corrosion, resistance is poor , positive temperature coefficient 

Steel copper aluminium iron etc.

 

Non metallic inorganic materials (also referred as ceramics)

No cluster high strength even at high temperature excellent resistance to oxidation and corrosion good thermal and electrical insulator brittle.  

Oxide (Sio2, MgO, Al2O3, BaTiO3 ) silicate borides, nitrides, carbides.

Organic polymers

Easy to fabricated, good insulators, light in weight, good corrosion resistance, low strength, negative temperature resistance

Generally synthetic organic compounds rubber (natural polymer).

 

Composite (combination of above various verities of materials

Many unusual combinations of properties can be accomplished by the suitable design of a composite.

Strong carbon fifers embedded in plastics, concrete, wood (naturally occurring composite.)

 

(1) To transmit electricity.

(2) To resist the flow of electricity except in a particular direction

(3) To store electrical energy.

(4) (A) to transfer electrical energy from one circuit to another,

     (B) To change the form of energy,

(5) To change nature and level of electrical signals.

Analyzing the above, a function classification of electrical engineering materials can be made as follows:

(1)         The materials which, allow the CURRENT to pass through them, are called conducting materials. These have very low electrical resistance and available in large variety having diverse properties. The conducting materials should be able to withstand high temperatures and on the other hand should have minimum power loss even when carrying large Nichrome currents. Examples: copper, aluminium, silver, gold, tungsten, platinum, tantalum, bronze, brass, steel, lead, mercury etc.   

(2)         The materials which obstruct the flow of current without any appreciable power loss are classified as insulating materials. These have very high electrical resistance and are available in large variety. Examples: rubber, Glass, Asbestos, Bitumen, Wood, etc.

(3)         The materials, which store electrical energy, are classified as dielectric materials. They increase the capacitance or charge storage ability of a capacitor. Examples: air, mica, ceramic, plastic etc.

(4)         The materials which provide a path to the magnetic flux are classified magnetic materials. Many electrical engineering devices such as inductors, transformers, rotating machines and ferrite antennas are based on utilizing the magnetic properties of materials. Examples: iron, high carbon steel, tungsten steel, cobalt steel, barium ferrite, chromium steel etc.

(5)         The material which possess electrical resistivity in between the conducting and insulating materials are classified as semiconductor materials. They are used for the manufacturing of devices like diode, transistors, rectifier etc. Examples: silicon, germanium, graphite, diamond, selenium, silicon, carbide, gallium phosphate, gallium arsenide, cadmium sulphide, etc.

Posted Date: 7/9/2012 7:10:56 AM | Location : United States







Related Discussions:- Engineering materials and engineering materials properties, Assignment Help, Ask Question on Engineering materials and engineering materials properties, Get Answer, Expert's Help, Engineering materials and engineering materials properties Discussions

Write discussion on Engineering materials and engineering materials properties
Your posts are moderated
Related Questions
Within the elastic region (see the graph below), there exist a between the force applied and the change in the physical state of object. Experiments have shown that the elastic beh

what is the mass of CPH? Answer; Since I told before, when CPH takes spin it calls graviton. Thus, our problem is the mass of graviton. There isn't any acceptable summa.

Human Eye: It is spherical in shape, diameter about 2.5 cm, having of three layers. a) Sclera                               b) Choroid

Charging: During charging the device is linked across a source of D.C. supply having a voltage of about 3 volts. When the circuit is switched on the current flows inside the cell

If a ring were constructed as knid of a space station. How fast must a 50.0-m-radius ring rotate to simulate Earth's gravity?

Examples of like and unlike parallel forces?

Is it possible to construct a vibration magnetometer at home?? If yes then what all materials will i require ? Also what is the working principle of the vibration magnetometer?

Electrical power: Electrical power (symbol P) is the rate at which work is done or the rate of conversion of energy by an electrical system. The SI unit of power is the


a rocket is launched upward from a building that is 29m above the ground. the rocket was launched (upward) at 18m/s, what was the time to reach the ground below the building?