Electromagnetic conversion device with example., Mechanical Engineering

Assignment Help:

Q. In every electromagnetic conversion device, both generator and motor action take place simultaneously. Explain.

The case the output is mechanical as in a motoring mode, the coupling field must react with the electrical system as to absorb electrical energy from electrical system. In such a case i.e. in a motoring mode this reaction is counter emf e , similar to the emf induced in the primary winding of a transformer the coupling field extracts energy proportional to ei from the electrical system, converts it into mechanical from and delivers energy proportional to T? to the mechanical system.

In case the output is electrical as in a generating mode, the coupling field must react with mechanical system so as to absorb mechanical energy from mechanical system. In such a case ei, in a generating mode, this reaction is the counter torque T developed due to interactions of current i and the coupling field. Thus coupling field extracts mechanical energy proportional to T? from the mechanical system converts into electrical form and delivers energy proportional to ei to the electrical system.

Example

A coil with an axial length of 25 cm and diameter of 20 cm has 200 turns. It is placed in a uniform radial flux of 0.002 web/m2/ (a) If the coil is rotated at 25 rev. per sec., find the voltage induced in the coil. (b) What will be the force on each conductor and torque acting on the coil, if it carries a current of 10 Amps.

 l = 25 cm

 

            d = 20 cm

 

            N = 200 turn

 

            Φ = 0.002 ?b/m2

 

            V = 25 rev. per sec.

 

             e = T

 

             e = Blv

 

            B =  Φ/a

 

             a = π/4 (d2) = π/4 × (20 × 10-2)2 = 0.0314 m2

 

            B = 0.002/0.0314 T

 

            B = 0.06269 T

 

             e = 0.06363 × (25 × 10-2) × 25

 

             e = 0.398

 

             e = 0.4 volts

 

             f = BIl

 

            F = 0.06369 × 10 × 25 × 10-2 = 0.159225 newtons

 

            T = 2 IBRl

 

 

               = 2 × 10 × 0.06369 × 20/2 × 10-2 × 25 × 10-2 = 0.031845 N-m


Related Discussions:- Electromagnetic conversion device with example.

Derive eulers equation of motion, (a) Reduce expression for the net pressur...

(a) Reduce expression for the net pressure and depth of centre of pressure in case of an inclined plan surface submerged in a fluid. (b) Derive Euler's equation of motion along

Moment of resistance, Explain the Moment of resistance? Sol.: The two...

Explain the Moment of resistance? Sol.: The two equal and unlike parallel forces, the lines of action of which are not same, form couple. The resultant compressive force ( P

Determine the types of evolutionary cad applications, Determine the Types o...

Determine the Types of Evolutionary CAD applications Evolutionary CAD applications supporting design can be categorized into three types - traditional, knowledge based, and im

Calculate the moment of inertia , Calculate the centroid (use point A as th...

Calculate the centroid (use point A as the reference) and the moment of inertia of the shape shown in Figure. The dimensions are given in centimeters.  Calculate the moment

Polymer, classification of polymers

classification of polymers

Mechatronics, what is plc and how does it works

what is plc and how does it works

How is varignons theorem useful in engineerin mechanics, how is varignons t...

how is varignons theorem useful in engineering mechanics

Group technology, What is the basis for forming graphs in group technology

What is the basis for forming graphs in group technology

How to find damping constant, m=4.9Kg, K=3694 N/m, x=0.013m. I have this mu...

m=4.9Kg, K=3694 N/m, x=0.013m. I have this much details, now I want to find the damping constant ''b''. I hv tried so much, but this question needs damping ratio ''zeta'' or damped

Determine the thermal conductivity of the rod, One end of a rod, 35 mm in d...

One end of a rod, 35 mm in diameter, is diped into a furnace with the other end projecting in the outer air. After the steady state is obtained, the temperature of the rod is evalu

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd