Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Diffusion Capacitance
Diffusion capacitance is the capacitance because of transport of charge carriers among the two terminals of a device, for instance, the diffusion of carriers from anode to cathode in forward bias mode of a diode or from emitter to base (forward-biased junction in active region) for a transistor. In a semiconductor device along with a current flowing via it (for instance, an ongoing transport of charge by diffusion) at a specific moment there is essentially a number of charge in the procedure of transit via the device. If the applied voltage modifies to a different value and the current changes to a different value, a different amount of charge will be in transit in the new situations. The change in the amount of transiting charge divided by the change in the voltage that causing it is the diffusion capacitance. The adjective "diffusion" is employed because the original make use of this term was for junction diodes, in which the charge transport was through the diffusion mechanism.
To execute this notion quantitatively, at a specific moment in time let the voltage across the device be V. at present assume that the voltage changes with time slowly enough that at each moment the current is similar like the DC current that would flow at that voltage, say I = I(V) (the quasi static approximation). Assume further that the time to cross the device is the forward transit time TF. In this case the amount of charge in transit via the device at this specific moment, denoted Q, is given by
Q = I (V) τF.
Accordingly, the corresponding diffusion capacitance: Cdiff is
Cdiff = dQ /dV = (dI(V) / dV) TF
In the event the quasi-static approximation does not hold, i.e. for extremely fast voltage changes occurring in times shorter than the transit time τF, the equations governing time-dependent transport in the device have to be solved to find the charge in transit, for instance the Boltzmann equation.
For the circuit of Figure, given that V CC = 5V, R C = 1k, β = 100, and the high range is 4 to 5 V, choose R B such that any high input will saturate the transistor with the ba
How to Make LPG Safer in the Laboratory The following must be observed in the laboratory: 1. The LPG cylinders should be kept outside the laboratory in a ventilated room.
Q. A negative impedance converter is used, as shown in Figure. Show that the load current i L is given by v in /R, which is independent of Z L . Note that since the load sees a cu
The transformer of Example is supplying full load (i.e., rated load of 50 kVA) at a rated secondary voltage of 240 V and 0.8 power factor lagging. Neglecting the exciting current o
I needed a PLC and SCADA assignment just the program and it has to be done in simatic flexible and step 7 software!
A DC shunt motor rotating at 1560 RPM is supplied from a 240-V source. The line current supplied to the motor is equal to 27 A. The shunt field resistance of the motor is equal to
Q. What is meant by regulation? The output of most power supplies should be a constant voltage. Unfortunately, this is difficult to achieve. There are two factors that can caus
How DRAM's are different from SRAM's? Why DRAMs are said to use address multiplexing? Ans Dynamic RAM (DRAM) is basically the same as SRAM except that it recollects data f
Hexadecimal Number System Similar to octal number hexadecimal number system is also used to represent long binary numbers in smaller form. In microprocessor we use hexad
Q. What can explain the failure of relative PPP to hold in reality? Answer: Government procedures of the price level differ from country to country. One cause for thes
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd