Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Diffusion Capacitance
Diffusion capacitance is the capacitance because of transport of charge carriers among the two terminals of a device, for instance, the diffusion of carriers from anode to cathode in forward bias mode of a diode or from emitter to base (forward-biased junction in active region) for a transistor. In a semiconductor device along with a current flowing via it (for instance, an ongoing transport of charge by diffusion) at a specific moment there is essentially a number of charge in the procedure of transit via the device. If the applied voltage modifies to a different value and the current changes to a different value, a different amount of charge will be in transit in the new situations. The change in the amount of transiting charge divided by the change in the voltage that causing it is the diffusion capacitance. The adjective "diffusion" is employed because the original make use of this term was for junction diodes, in which the charge transport was through the diffusion mechanism.
To execute this notion quantitatively, at a specific moment in time let the voltage across the device be V. at present assume that the voltage changes with time slowly enough that at each moment the current is similar like the DC current that would flow at that voltage, say I = I(V) (the quasi static approximation). Assume further that the time to cross the device is the forward transit time TF. In this case the amount of charge in transit via the device at this specific moment, denoted Q, is given by
Q = I (V) τF.
Accordingly, the corresponding diffusion capacitance: Cdiff is
Cdiff = dQ /dV = (dI(V) / dV) TF
In the event the quasi-static approximation does not hold, i.e. for extremely fast voltage changes occurring in times shorter than the transit time τF, the equations governing time-dependent transport in the device have to be solved to find the charge in transit, for instance the Boltzmann equation.
HELLO.can I have a short note on database resources
Q. Determine the Laplace transform of the waveform shown in Figure.
Q. Which Steps are used for the procurement? a. Initially, an introductory letter may be sent addressed to The Head, NRSA Data Centre, National Remote Sensing Agency, Balanagar
write down the application of shift register and explain it.
principal and working of analog Storage Oscilloscope
Q. Show Maximum Differential Input Voltage of amplifier? This is the maximum value of differential input voltage v p - v n that can be applied without damaging the op amp.
Q. If a single phase motor fails to run or start slow what action to be taken. Ans: If it is not starting check the supply and test the winding if it found normal check
Calculate the following for a 2 hp and a 20 hp dc machine, each rated for 500 rpm. Use data from the Study Plan 1 data sheet, including "hot" armature resistance value for all cal
Ionic Bonding Instance: NaCl. Na (Z = 11) gives up the outermost shell electron of it to Cl (Z=17) atom, so the crystal is build up of ions with the electronic structure
Types of Meter Test A meter should pass the subsequent two types of tests: Type Tests Routine Tests Meters are calibrated such in which the whole
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd