Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Diffusion Capacitance
Diffusion capacitance is the capacitance because of transport of charge carriers among the two terminals of a device, for instance, the diffusion of carriers from anode to cathode in forward bias mode of a diode or from emitter to base (forward-biased junction in active region) for a transistor. In a semiconductor device along with a current flowing via it (for instance, an ongoing transport of charge by diffusion) at a specific moment there is essentially a number of charge in the procedure of transit via the device. If the applied voltage modifies to a different value and the current changes to a different value, a different amount of charge will be in transit in the new situations. The change in the amount of transiting charge divided by the change in the voltage that causing it is the diffusion capacitance. The adjective "diffusion" is employed because the original make use of this term was for junction diodes, in which the charge transport was through the diffusion mechanism.
To execute this notion quantitatively, at a specific moment in time let the voltage across the device be V. at present assume that the voltage changes with time slowly enough that at each moment the current is similar like the DC current that would flow at that voltage, say I = I(V) (the quasi static approximation). Assume further that the time to cross the device is the forward transit time TF. In this case the amount of charge in transit via the device at this specific moment, denoted Q, is given by
Q = I (V) τF.
Accordingly, the corresponding diffusion capacitance: Cdiff is
Cdiff = dQ /dV = (dI(V) / dV) TF
In the event the quasi-static approximation does not hold, i.e. for extremely fast voltage changes occurring in times shorter than the transit time τF, the equations governing time-dependent transport in the device have to be solved to find the charge in transit, for instance the Boltzmann equation.
Aplication of resonance in different divices
Q. A silicon diode is forward-biased with V = 0.5 V at a temperature of 293 K. If the diode current is 10 mA, calculate the saturation current of the diode.
Clipper Circuits: Clipper circuit have ability to Clipper of portions of the input signals without distorting the remaining part of the alternating wave form. Clamper net
what is strain gage
If a current of 10A flows for four minutes, find the quantity of electricity transferred. Quantity of electricity, Q=It coulombs. I =10A and t = 4 × 60 = 240s. Hence Q =
Q. Explain about Common Control? Common Control: Those systems in which the control subsystem is outside the switching network are known as common control switching system. Str
What are shift registers? Design a 8 bit shift register with features like PISO, SISO, SIPO and PIPO.
Q. The inductance per unit length in H/mfor parallel plate in?nitely long conductors in air is given by L = µ 0 d/w = 4π×10 -7 d/w, where d and w are inmeters.Compute L (per unit
why inductive load is use in electronics circuit?
i need tutor for teaching me matrix converter based upfc modelling and building using matlab
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd