Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Diffusion Capacitance
Diffusion capacitance is the capacitance because of transport of charge carriers among the two terminals of a device, for instance, the diffusion of carriers from anode to cathode in forward bias mode of a diode or from emitter to base (forward-biased junction in active region) for a transistor. In a semiconductor device along with a current flowing via it (for instance, an ongoing transport of charge by diffusion) at a specific moment there is essentially a number of charge in the procedure of transit via the device. If the applied voltage modifies to a different value and the current changes to a different value, a different amount of charge will be in transit in the new situations. The change in the amount of transiting charge divided by the change in the voltage that causing it is the diffusion capacitance. The adjective "diffusion" is employed because the original make use of this term was for junction diodes, in which the charge transport was through the diffusion mechanism.
To execute this notion quantitatively, at a specific moment in time let the voltage across the device be V. at present assume that the voltage changes with time slowly enough that at each moment the current is similar like the DC current that would flow at that voltage, say I = I(V) (the quasi static approximation). Assume further that the time to cross the device is the forward transit time TF. In this case the amount of charge in transit via the device at this specific moment, denoted Q, is given by
Q = I (V) τF.
Accordingly, the corresponding diffusion capacitance: Cdiff is
Cdiff = dQ /dV = (dI(V) / dV) TF
In the event the quasi-static approximation does not hold, i.e. for extremely fast voltage changes occurring in times shorter than the transit time τF, the equations governing time-dependent transport in the device have to be solved to find the charge in transit, for instance the Boltzmann equation.
Explain RS232C Standard. RS232C: 1. Standard described for asynchronous communications where there is given timing among data bits and no fixed timing among the characters
Topics for the projects 1. Power supply design: One source, multiple source. Project process: 1. Design(circuit analysis, diagram, list of components). 2. Hardware e
Mode1 When the positive pulse from PWM is applied to the transistor Q shown in figure it gets turned on. In this condition current flows through transistor Q and.
Write a short explanation of the principles of super-heterodyne receiver. It may help to use sample block diagram to state the process. Why is the production of the intermediate fr
There is a limitation on the size of data. Most Microprocessor does not maintain floating-point operations.
Q. Define Resistance Strain Gauge? Mechanical and civil engineers routinely employ the dependence of resistance on the physical dimensions of a conductor to measure strain. A s
advantages over other theorams
how can i calculate that is following signal is periodic or not? X[n]= ?_(k=-8)^8¦?{d[n-4k]-d[n-1]-4k]}?
Explain Microprocessor development system. Microprocessor development system: Computer systems consist of undergone many changes lately. Machines which once filled large area
Experiment • Wire the circuit shown in Figure. Connect the three oscilloscope channels as shown in Figure. • Select the sinusoidal waveform. Adjust the frequency of the input volt
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd