Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Diffusion Capacitance
Diffusion capacitance is the capacitance because of transport of charge carriers among the two terminals of a device, for instance, the diffusion of carriers from anode to cathode in forward bias mode of a diode or from emitter to base (forward-biased junction in active region) for a transistor. In a semiconductor device along with a current flowing via it (for instance, an ongoing transport of charge by diffusion) at a specific moment there is essentially a number of charge in the procedure of transit via the device. If the applied voltage modifies to a different value and the current changes to a different value, a different amount of charge will be in transit in the new situations. The change in the amount of transiting charge divided by the change in the voltage that causing it is the diffusion capacitance. The adjective "diffusion" is employed because the original make use of this term was for junction diodes, in which the charge transport was through the diffusion mechanism.
To execute this notion quantitatively, at a specific moment in time let the voltage across the device be V. at present assume that the voltage changes with time slowly enough that at each moment the current is similar like the DC current that would flow at that voltage, say I = I(V) (the quasi static approximation). Assume further that the time to cross the device is the forward transit time TF. In this case the amount of charge in transit via the device at this specific moment, denoted Q, is given by
Q = I (V) τF.
Accordingly, the corresponding diffusion capacitance: Cdiff is
Cdiff = dQ /dV = (dI(V) / dV) TF
In the event the quasi-static approximation does not hold, i.e. for extremely fast voltage changes occurring in times shorter than the transit time τF, the equations governing time-dependent transport in the device have to be solved to find the charge in transit, for instance the Boltzmann equation.
Q. An integrator with positive voltage on a noninverting input is shown in Figure. Sketch v o for 60 ms after S has been opened.
Octal Number Systems Now the question may arise in one mind that why to learn octal number system when neither human nor the digital systems uses. It hence it is
Explain the delay model based on logical effort often used in estimating delays in logic cells. Hence use the model to predict the delay of a 4-input NOR logic cell with a 3 times
how can we increase insulation resistance of sheet
What are the main embedded system components? Main Embedded System Components a. Embeds hardware to provide computer as functionalities b. Embeds major application softw
Define Multiple Inputs - Control System When there is much more than one input to a system, the superposition principle can be employed. This is that: The response to variou
(a) Let a unit impulse of current i(t) = δ(t) be applied to a parallel combination of R = 3 and C = 1/2 F. Determine the voltage vC(t) across the capacitor. (b) Repeat (a) for
Give the properties and application of permanent magnetic materials. Permanent magnetic materials: Properties: Permanent magnetic materials have a huge area of hyster
Q. Show Binary Coded Decimal Number System? If we analysis single digit values for hex, the numbers 0 - F, they represent the values 0 - 15 in decimal, and occupy a nibble. Fre
Astigmation control: In most modern oscilloscopes there is an additional focusing control marked Astigmation . This is used to correct an effect which exactly is analogous to
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd