Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Diffusion Capacitance
Diffusion capacitance is the capacitance because of transport of charge carriers among the two terminals of a device, for instance, the diffusion of carriers from anode to cathode in forward bias mode of a diode or from emitter to base (forward-biased junction in active region) for a transistor. In a semiconductor device along with a current flowing via it (for instance, an ongoing transport of charge by diffusion) at a specific moment there is essentially a number of charge in the procedure of transit via the device. If the applied voltage modifies to a different value and the current changes to a different value, a different amount of charge will be in transit in the new situations. The change in the amount of transiting charge divided by the change in the voltage that causing it is the diffusion capacitance. The adjective "diffusion" is employed because the original make use of this term was for junction diodes, in which the charge transport was through the diffusion mechanism.
To execute this notion quantitatively, at a specific moment in time let the voltage across the device be V. at present assume that the voltage changes with time slowly enough that at each moment the current is similar like the DC current that would flow at that voltage, say I = I(V) (the quasi static approximation). Assume further that the time to cross the device is the forward transit time TF. In this case the amount of charge in transit via the device at this specific moment, denoted Q, is given by
Q = I (V) τF.
Accordingly, the corresponding diffusion capacitance: Cdiff is
Cdiff = dQ /dV = (dI(V) / dV) TF
In the event the quasi-static approximation does not hold, i.e. for extremely fast voltage changes occurring in times shorter than the transit time τF, the equations governing time-dependent transport in the device have to be solved to find the charge in transit, for instance the Boltzmann equation.
Q. Use the node-voltage method to find the current I through the 5- resistor of the circuit of Figure.
connection of STS MUX/DMUX
Damage of revolving metallic disc due to tampering
how is it possible to operate Q3 with no dc drain? where is the dc operating point?
Q. What is Elementary Diode Circuits? Semiconductor diodes are used in a wide variety of applications. Their usage abounds in communication systems (limiters, gates, clippers,
Q. For the circuit shown in Figure(a), determine the diode current and voltage and the power delivered by the voltage source. The diode characteristic is given in Figure.
Address Bus The address bus is the group of 16 lines. It is used to carry the address of memory location and addresses of input and output ports as shown. It is a unid
Q. Explain the conditions to be satisfied for sustained oscillations in an oscillator circuit with the help of block diagram. The essential condition for sustained oscillations
A JFET for which V A = 80 V, V P = 4 V, and I DSS = 10 mA has a quiescent drain current of 3 mA when used as a common-source amplifier for which R D = R SS = 1k and R L = 3k
Design a logic circuit with 4 inputs A, B, C & D that will produce output ‘1’ only whenever two adjacent input variables are 1’s. A & D are also to be treated as adjacent, impleme
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd