Decision problems, Theory of Computation

In Exercise 9 you showed that the recognition problem and universal recognition problem for SL2 are decidable. We can use the structure of Myhill graphs to show that other problems for SL2 are decidable as well. For example, Finiteness of SL2 languages is decidable, which is to say,
there is an algorithm that, given an SL2 automaton A, returns TRUE if L(A) is finite, FALSE otherwise.

Posted Date: 3/21/2013 6:00:48 AM | Location : United States







Related Discussions:- Decision problems, Assignment Help, Ask Question on Decision problems, Get Answer, Expert's Help, Decision problems Discussions

Write discussion on Decision problems
Your posts are moderated
Related Questions

Suppose G = (N, Σ, P, S) is a reduced grammar (we can certainly reduce G if we haven't already). Our algorithm is as follows: 1. Define maxrhs(G) to be the maximum length of the


Let L1 and L2 be CGF. We show that L1 ∩ L2 is CFG too. Let M1 be a decider for L1 and M2 be a decider for L2 . Consider a 2-tape TM M: "On input x: 1. copy x on the sec

The upper string r ∈ Q+ is the sequence of states visited by the automaton as it scans the lower string w ∈ Σ*. We will refer to this string over Q as the run of A on w. The automa

draw pda for l={an,bm,an/m,n>=0} n is in superscript

The objective of the remainder of this assignment is to get you thinking about the problem of recognizing strings given various restrictions to your model of computation. We will w

DEGENERATE OF THE INITIAL SOLUTION