Data reduction, Applied Statistics

The PCA is amongst the oldest of the multivariate statistical methods of data reduction. It is a technique for simplifying a dataset, by reducing multidimensional datasets to lower dimensions for analysis. It produces a small number of derived variables that are uncorrelated and that account for most of the variation in the original data set.'By reducing the number of variables'in this way, we can understand the underlying structure of the data. 'The derived variables are combinations of the original variables. For example, it might be that students take I0 examinations and some students do well in one examination while other students do better in another. It is difficult to compare one student with another when we have 10 marks to consider. One obvious way of comparing students is to calculate the mean score.

This is a constructed combination of the existing variables. However, one might get a more useful comparison of overall performances by considering other constructed cwbinations of the 10 exam marks. The PCA is one way of constructing such combinations, doing so in such a way as to account fer the maximum possible variation in the original data. We can then compare students' performance by considering this much smaller number of variables.

PCA states and then solves a well-defined statistical problem, and except for special cases always gives a unique solution wi.th some very nice mathematical properties. We can even describe some very artificial practical problems for which PCA provides the exact solution. The difficulty comes in trying to relate PCA to real-life scientific problems; the match is simply not very good. Actually PCA often provides a good approximation to common factor analysis, but that feature is now unimportant since both methods are now easy enough.

Posted Date: 4/4/2013 3:43:13 AM | Location : United States







Related Discussions:- Data reduction, Assignment Help, Ask Question on Data reduction, Get Answer, Expert's Help, Data reduction Discussions

Write discussion on Data reduction
Your posts are moderated
Related Questions
b. A paper mill produces two grades of paper viz., X and Y. Because of raw material restrictions, it cannot produce more than 400 tons of grade X paper and 300 tons of grade Y


How much would u charge for 4 questions

In PCA the eigknvalues must ultimately account for all of the variance. There is no probability,'no hypothesis, no test because strictly speaking PCA is not a statistical procedure

The file Midterm  Data.xls has a tab labeled "National Grid vs. Alcoa" which presents historical price data for two stocks.  Using the National Grid price as the X-value and the Al

Hi There, I have a question regarding R, and I am wondering if anyone can help me. Here is a code that I would like to understand: squareFunc g f(x)^2 } return(g) } sin

Where do I Access the gss04student_corrected dataset

The data used is from a statistical software Minitab; London.MPJ is the file that consists of 1519 households drawn from 1980 - 1982 British Family Expenditure Surveys. Data that i

To compare three brands of computer keyboards, four data entry specialists were randomly selected. Each specialist used all three keyboards to enter the same kind of text material

Having 11 numbered balls -0 to 10 -into a basket and have 6 spaces to be numbered with the balls selected in each 6 chances and it returned it back to the basket each time. Chanc