Construct a recognizer, Theory of Computation

Assignment Help:

Let L1 and L2 be CGF. We show that L1 ∩ L2 is CFG too.

Let M1 be a decider for L1 and M2 be a decider for L2 .

Consider a 2-tape TM M:

"On input x:

1. copy x on the second tape

2. on the ?rst tape run M1 on x

M=

3. if M1 accepted then goto 4. else M rejects

4. on the second tape run M2 on x

5. if M2 accepted then M accepts else M rejects."

The machine M is a decider and it accepts a string x i? both M1 and M2 accept x.

Two-tape TM is as expressive as the single tape TM.

 

8.3 b)

Let L1 and L2 be recognizable languages with the corresponding recognizers M1 and M2 . We construct a recognizer M for L1 ∪ L2 .

Strategy I: run M1 and M2 in parallel on a 2-tape TM M

M = "On input x:

1. Copy x on the second tape.

2. Do one step of M1 on tape 1 and one step of M2 on tape 2.

3. If either M1 or M2 accepted, then M accepts, else goto 2."

Strategy II: nondeterministically choose to run M1 or M2

M = "On input x:

1. Nondeterministically choose i ∈ {1, 2}.

2. Run machine Mi on the input x.

3. If Mi accepted, then M accepts.

If Mi rejected, then M rejects."


Related Discussions:- Construct a recognizer

IT PRoject Management, What are the benefits of using work breakdown struct...

What are the benefits of using work breakdown structure, Project Management

Java programming, 1. An integer is said to be a “continuous factored” if it...

1. An integer is said to be a “continuous factored” if it can be expresses as a product of two or more continuous integers greater than 1. Example of continuous factored integers

Merging nodes, Another striking aspect of LTk transition graphs is that the...

Another striking aspect of LTk transition graphs is that they are generally extremely ine?cient. All we really care about is whether a path through the graph leads to an accepting

Finite automata, design an automata for strings having exactly four 1''s

design an automata for strings having exactly four 1''s

Automata, As we are primarily concerned with questions of what is and what ...

As we are primarily concerned with questions of what is and what is not computable relative to some particular model of computation, we will usually base our explorations of langua

Myhill-nerode theorem, This close relationship between the SL2 languages an...

This close relationship between the SL2 languages and the recognizable languages lets us use some of what we know about SL 2 to discover properties of the recognizable languages.

Union, Intuitively, closure of SL 2 under intersection is reasonably easy ...

Intuitively, closure of SL 2 under intersection is reasonably easy to see, particularly if one considers the Myhill graphs of the automata. Any path through both graphs will be a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd