Construct a recognizer, Theory of Computation

Let L1 and L2 be CGF. We show that L1 ∩ L2 is CFG too.

Let M1 be a decider for L1 and M2 be a decider for L2 .

Consider a 2-tape TM M:

"On input x:

1. copy x on the second tape

2. on the ?rst tape run M1 on x

M=

3. if M1 accepted then goto 4. else M rejects

4. on the second tape run M2 on x

5. if M2 accepted then M accepts else M rejects."

The machine M is a decider and it accepts a string x i? both M1 and M2 accept x.

Two-tape TM is as expressive as the single tape TM.

 

8.3 b)

Let L1 and L2 be recognizable languages with the corresponding recognizers M1 and M2 . We construct a recognizer M for L1 ∪ L2 .

Strategy I: run M1 and M2 in parallel on a 2-tape TM M

M = "On input x:

1. Copy x on the second tape.

2. Do one step of M1 on tape 1 and one step of M2 on tape 2.

3. If either M1 or M2 accepted, then M accepts, else goto 2."

Strategy II: nondeterministically choose to run M1 or M2

M = "On input x:

1. Nondeterministically choose i ∈ {1, 2}.

2. Run machine Mi on the input x.

3. If Mi accepted, then M accepts.

If Mi rejected, then M rejects."

Posted Date: 2/23/2013 12:52:16 AM | Location : United States







Related Discussions:- Construct a recognizer, Assignment Help, Ask Question on Construct a recognizer, Get Answer, Expert's Help, Construct a recognizer Discussions

Write discussion on Construct a recognizer
Your posts are moderated
Related Questions
how many pendulum swings will it take to walk across the classroom?

These assumptions hold for addition, for instance. Every instance of addition has a unique solution. Each instance is a pair of numbers and the possible solutions include any third

The language accepted by a NFA A = (Q,Σ, δ, q 0 , F) is NFAs correspond to a kind of parallelism in the automata. We can think of the same basic model of automaton: an inpu

Computer has a single LIFO stack containing ?xed precision unsigned integers (so each integer is subject to over?ow problems) but which has unbounded depth (so the stack itself nev

As de?ned the powerset construction builds a DFA with many states that can never be reached from Q′ 0 . Since they cannot be reached from Q′ 0 there is no path from Q′ 0 to a sta

When we say "solved algorithmically" we are not asking about a speci?c programming language, in fact one of the theorems in computability is that essentially all reasonable program

Rubber shortnote

I want a proof for any NP complete problem

When we study computability we are studying problems in an abstract sense. For example, addition is the problem of, having been given two numbers, returning a third number that is