Cardinal payoffs, Game Theory

 

Cardinal payoffs are numbers representing the outcomes of a game where the numbers represent some continuum of values, such as money, market share or quantity. Cardinal payoffs permit the theorist to vary the intensity or degree of payoffs, unlike ordinal payoffs, in which only the order of values is pivotal. For mixed, payoffs, strategy calculations must be cardinal.

 

Posted Date: 7/21/2012 5:30:15 AM | Location : United States







Related Discussions:- Cardinal payoffs, Assignment Help, Ask Question on Cardinal payoffs, Get Answer, Expert's Help, Cardinal payoffs Discussions

Write discussion on Cardinal payoffs
Your posts are moderated
Related Questions
Identification is a problem of model formultion, rather than inf nlnde! estimation or appraisal. We say a model is identified if it is in a unique statistical form, enabling unique

About assignment The goal of this assignment is for the student to propose a new game of your own and to be able to present their ideas in clear and convincing manner. This pro

An auction during which many (more than one) things are offered for sale. Mechanisms for allocating multiple units embody discriminatory and uniform worth auctions.


what will be the best strategy for a bidder in an auction comprised of four bidders?

A proxy bidder represents the interests of a bidder not physically gift at the auction. Typically, the bidder can inform his proxy of the most quantity he's willing to pay, and als

The Prisoners’ Dilemma Game The idea that tacit cooperation can be sustained in an ongoing relationship is very simple and students easily accept it. The formal analysis

Case study GAME 1 Rock-Scissors-Paper This game entails playing three different versions of the children's game rock-scissors-paper. In rock-scissors-paper, two people si

Two people are engaged in a joint project. If each person i puts in the effort xi, the outcome of the project is worth f(x1, x2). Each person’s effort level xi is a number between

Two animals are fighting over a prey. The prey is worth v to each animal. The cost of fighting is c1 for the first animal (player 1) and c2 for the second animal (player 2). If the