Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Q. The reason bubble sort algorithm is inefficient is that it continues execution even after an array is sorted by performing unnecessary comparisons. Therefore, the number of comparisons in the best and worst cases both are same. Modify the algorithm such that it will not make the next pass when the array is already sorted.
Ans:
The bubble sort continues the execution even after an array is sorted. To avoid unnecessary comparisons we add a Boolean variable say switched and initialize it by True in the starting. Along with the "for" loop, we hear add the condition (switched=true) and make it false inside the outer for loop. If a swapping is done then the value of switched is made true. Thus if no swapping has been done in the first pass, then no more comparisons will be done further and the program shall exit. The algorithm after modifying it in the above stated manner will be as follows:- void bubble(int x[],int n) { int j,pass,hold; bool switched=true; for(pass=0;pass { switched=false; for(j=0;j { switched=true; hold=x[j]; x[j]=x[j+1]; x[j+1]=hold; } } }
The bubble sort continues the execution even after an array is sorted. To avoid unnecessary comparisons we add a Boolean variable say switched and initialize it by True in the starting. Along with the "for" loop, we hear add the condition (switched=true) and make it false inside the outer for loop. If a swapping is done then the value of switched is made true. Thus if no swapping has been done in the first pass, then no more comparisons will be done further and the program shall exit.
The algorithm after modifying it in the above stated manner will be as follows:-
void bubble(int x[],int n)
{
int j,pass,hold;
bool switched=true;
for(pass=0;pass { switched=false; for(j=0;j { switched=true; hold=x[j]; x[j]=x[j+1]; x[j+1]=hold; } } }
switched=false;
for(j=0;j { switched=true; hold=x[j]; x[j]=x[j+1]; x[j+1]=hold; } } }
switched=true; hold=x[j]; x[j]=x[j+1];
x[j+1]=hold;
}
When writing a code for a program that basically answers Relative Velocity questions how do you go at it? How many conditions should you go through?
Write an algorithm to test whether a Binary Tree is a Binary Search Tree. The algorithm to test whether a Binary tree is as Binary Search tree is as follows: bstree(*tree) {
explain implementation of circular queue insert,delete operations
Q. An, array, A comprises of n unique integers from the range x to y(x and y inclusive where n=y-x). Which means, there is only one member that is not in A. Design an O(n) time alg
Program: Creation of a Circular linked list ALGORITHM (Insertion of an element into a Circular Linked List) Step 1 Begin Step 2 if the list is empty or new
Advantages of dry running a flowchart When dry running a flowchart it's advisable to draw up a trace table illustrating how variables change their values at every stage in the
Can a Queue be shown by circular linked list with only single pointer pointing to the tail of the queue? Yes a Queue can be shown by a circular linked list with only single p
advanatges of dynamic data structure in programming
We have discussed that the above Dijkstra's single source shortest-path algorithm works for graphs along with non-negative edges (like road networks). Given two scenarios can emerg
As we have seen, as the traversal mechanisms were intrinsically recursive, the implementation was also easy through a recursive procedure. Though, in the case of a non-recursive me
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd