Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Q. The reason bubble sort algorithm is inefficient is that it continues execution even after an array is sorted by performing unnecessary comparisons. Therefore, the number of comparisons in the best and worst cases both are same. Modify the algorithm such that it will not make the next pass when the array is already sorted.
Ans:
The bubble sort continues the execution even after an array is sorted. To avoid unnecessary comparisons we add a Boolean variable say switched and initialize it by True in the starting. Along with the "for" loop, we hear add the condition (switched=true) and make it false inside the outer for loop. If a swapping is done then the value of switched is made true. Thus if no swapping has been done in the first pass, then no more comparisons will be done further and the program shall exit. The algorithm after modifying it in the above stated manner will be as follows:- void bubble(int x[],int n) { int j,pass,hold; bool switched=true; for(pass=0;pass { switched=false; for(j=0;j { switched=true; hold=x[j]; x[j]=x[j+1]; x[j+1]=hold; } } }
The bubble sort continues the execution even after an array is sorted. To avoid unnecessary comparisons we add a Boolean variable say switched and initialize it by True in the starting. Along with the "for" loop, we hear add the condition (switched=true) and make it false inside the outer for loop. If a swapping is done then the value of switched is made true. Thus if no swapping has been done in the first pass, then no more comparisons will be done further and the program shall exit.
The algorithm after modifying it in the above stated manner will be as follows:-
void bubble(int x[],int n)
{
int j,pass,hold;
bool switched=true;
for(pass=0;pass { switched=false; for(j=0;j { switched=true; hold=x[j]; x[j]=x[j+1]; x[j+1]=hold; } } }
switched=false;
for(j=0;j { switched=true; hold=x[j]; x[j]=x[j+1]; x[j+1]=hold; } } }
switched=true; hold=x[j]; x[j]=x[j+1];
x[j+1]=hold;
}
Breadth-first search starts at a given vertex h, which is at level 0. In the first stage, we go to all the vertices that are at the distance of one edge away. When we go there, we
In this unit, we described about the data structure Queue. It had two ends. One is front from where the elements can be removed and the other is rear where the elements can be inse
Write down the algorithm of quick sort. An algorithm for quick sort: void quicksort ( int a[ ], int lower, int upper ) { int i ; if ( upper > lower ) { i = split ( a,
What is bubble sort? Bubble Sort: The basic idea in bubble sort is to scan the array to be sorted sequentially various times. Every pass puts the largest element in its corr
Row Major Representation In memory the primary method of representing two-dimensional array is the row major representation. Under this representation, the primary row of the a
algorithm for insertion in a queue using pointers
how I can easily implement the bubble,selection,linear,binary searth algorithms?
If preorder traversal and post order traversal is given then how to calculate the pre order traversal. Please illustrate step by step process
give me algorithm of simple interest
Let G=(V,E) be a graph for which all nodes have degree 5 and where G is 5-edge is connected. a) Show that the vector x which is indexed by the edges E and for which xe = 1/5 for
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd