Binomial model, Financial Management

The option features embedded in many bonds and fixed-income securities have made the binomial interest rate tree approach a valuable model for pricing debt. Binomial model is an option valuation method developed by Cox, Ross, Rubinstein and Sharpe in 1979. This method of pricing options or other equity derivatives is based on the assumption that probability of each possible price follows a binomial distribution and that prices can either move to a higher level or a lower level with time until the option expires.

To value bonds using the binomial model, a binomial interest rate tree is to be constructed first. A binomial interest rate tree is nothing but a graphical representation of the short-term interest rates over a period of time based on some assumption about interest rate volatility. In this tree, each node represents a defined time period, say one year. Each node is represented by the letter T. The current year spot rate for the specified time period, in our example one-year spot rate, is represented by r0. As the model is based on the assumption that each possible price can either move higher or lower, each node gives rise to two options, TH and TL, where H represents higher and L represents lower. (Multiple paths to same node have been avoided to keep the figure simple. For example, HL can be reached in two ways, HL and LH, but only HL is shown in the Table.)

In Table 1, we see that T is the starting point of the interest rate tree, and r0 represents the current 1-year spot rate. It is assumed that the 1-year rate can take two possible values, either higher or lower, in the defined time period, i.e., 1-year in our example and they both have the same probability of occurrence.

         σ       = Assumed volatility of the 1-year rate.

         r1, L      = The lower 1-year rate one year from now.

         r1, H      = The higher 1-year rate one year from now.

Table 1: Binomial Interest Rate Tree

1634_binomial model.png

Now, we can define the relationship between the lower and higher value as follows:

r1, H = r1, L ( e )

e is the base of the natural logarithm, 2.71828.

Let us calculate the values using a hypothetical example; let us assume that the value of r1, L to be 4.7801, σ is 10% per year, then,

r1, H = 4.7801% (e 2*0.10) = 5.8384

In the second year, we find three possible values for the one year rate; they are:

r2, HH  =      1-year rate in second year assuming the higher rate in the first year and the

 higher rate in the second year.

r2, HL   =       1-year rate in second year assuming the higher rate in the first year and the

 lower rate in the second year.

r2, LL    =       1-year rate in second year assuming lower rate in first year and lower rate in

 second year.

r2, HH  is defined as r2, LL (e 4 σ) and r2, HL = r2, LL( e ).

Assuming r2, LL to be 4.8051% and σ as 10%, we can determine r2, HH, r2, HL as follows:

r2, HH = 4.8051% (e 4*0.10) = 7.1683%

r2, HL = 4.8051% (e 2*0.10) = 5.8689%

There are four possible values for the 1-year rate in the third year, they are denoted as r3, HHH, r3, HHL , r3, HLL and r3, LLL.

The relationship between them can be expressed as follows:

r3, HHH = r3, LLL( e )

r3, HHL = r3, LLL(e )

r3, HLL = r3, LLL( e ).

Let us make the Table easier to understand by replacing the notations with the simplified notations.

Table 2: Binomial Interest Rate Tree with One-Year Rates

1897_binomial model1.png

*rt equals forward 1-year lower rate. t year from now.

In valuing option free bonds, we have seen the use of single forward rate, but in valuing bonds with embedded option we use a set of forward rates, as at every level we come with more then one option.

Posted Date: 9/10/2012 6:42:32 AM | Location : United States

Related Discussions:- Binomial model, Assignment Help, Ask Question on Binomial model, Get Answer, Expert's Help, Binomial model Discussions

Write discussion on Binomial model
Your posts are moderated
Related Questions
Q. Explain about Pay Back Method? Pay Back Method (PB) :- The payback process is the simplest method. This method computed the number of years required to pay back the original

Church Inc. is currently enjoying relatively high growth because of a surge in the demand for its latest product.  Management expects earnings and dividends to grow at a rate of 25

A 16% debenture of R5 000 is redeemable at a premium of 10% after 5 years. The fair rate of return on similar debentures is 14% before tax. Calculate the present value of the capit

how are indian customers visiting shoppers stop

1) According to the IFE (RIP), if U.S. investors expect a 3% rate of domestic inflation over one year, and a 6% rate of inflation in European countries that use the EUR, and requir

What are the Measures of growth Sales or market share Number of products or markets Employees Profit Number of retail stores

Work out and submit the comprehensive problem below. Halstrom Corporation purchased a piece of equipment three years ago for $230,000. It has an asset depreciation

Q. Investigate the following functions for both horizontal and vertical asymptotes, x and y-intercepts, and state the domain and range of each and where the function is increasing

The Australian skiing industry operates out of a very narrow seasonal base-approximately three months in a good season. In a good year, providers of accommodation, ski hire and tow