Two people are involved in a dispute. Person 1 does not know whether person 2 is strong or weak; she assigns probability to person 2 being strong. Person 2 is fully informed. Each person can either fight or yield. Each person obtains a payoff of 0 if she yields (regardless of the other persons action) and a payoff of 1 if she fights and her opponent yields. If both people fight then their payoffs are (-1, 1) if person 2 is strong and (1,-1) if person 2 is weak. Formulate the situation as a Bayesian game and find its Bayesian equilibria if < 1/2 and if > 1/2 .