Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
The mathematical relationships of control systems are usually represented by block diagrams, which show the role of various components of the system and the interaction of variables in it.
It is common to use a block diagram in which each component in the system (or sometimes a group of components) is represented by a block. An entire systemmay, then, be represented by the interconnection of the blocks of the individual elements, so that their contributions to the overall performance of the system may be evaluated. The simple configuration shown in Figure is actually the basic building block of a complex block diagram. In the case of linear systems, the input-output relationship is expressed as a transfer function, wahich is the ratio of the Laplace transform of the output to the Laplace transform of the input with initial conditions of the system set to zero. The arrows on the diagram imply that the block diagram has a unilateral property. In other words, signal can only pass in the direction of the arrows.
A box is the symbol for multiplication; the input quantity is multiplied by the function in the box to obtain the output.With circles indicating summing points (in an algebraic sense) and with boxes or blocks denoting multiplication, any linear mathematical expression may be represented by block-diagram notation, as in Figure for the case of an elementary feedback control system.
The block diagrams of complex feedback control systems usually contain several feedback loops, and they may have to be simplified in order to evaluate an overall transfer function for the system. A few of the block diagram reduction manipulations are given in Table 3.4.1; no attempt is made here to cover all the possibilities.
(a) Find the Fourier series for the square wave shown in Figure(a). (b) Let a voltage source having the waveform of part (a) with a peak value of 100 V and a frequency of 10 Hz
Measurements made on the self-biased n-channel JFET shown in Figure are V GS =-1 V, I D = 4 mA; V GS =-0.5V, I D = 6.25 mA; and V DD = 15 V. (a) Determine V P and I DSS .
Q. Draw the common source drain and transfer characteristics of a JFET. How are they useful? The graph below shows variation of the drain current Id as a function of the drain
HOW TO WRITE INTRODUCTION OF ASSIGNMENT
Semiconductor Material: Semiconductor is a material that has a conductivity level somewhere between the extreme of an insulator and a conductor Resistivity of a material
Question: (a) The conversion of a time varying analog audio signal into digital form is carried out using an electronic circuit known as a (signal) encoder. Draw a labeled bl
operation of induction motor
Develop and execute a PSpice program to solve for the current I 2 in Figure.
Current ratio The ratio is mainly used to give an idea of the company's ability to pay back its short-term liabilities with its short-term assets. The higher the current ratio
The five addressing modes are given below: Immediate, Register, Direct, Implied addressing modes Register indirect,
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd