Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
The mathematical relationships of control systems are usually represented by block diagrams, which show the role of various components of the system and the interaction of variables in it.
It is common to use a block diagram in which each component in the system (or sometimes a group of components) is represented by a block. An entire systemmay, then, be represented by the interconnection of the blocks of the individual elements, so that their contributions to the overall performance of the system may be evaluated. The simple configuration shown in Figure is actually the basic building block of a complex block diagram. In the case of linear systems, the input-output relationship is expressed as a transfer function, wahich is the ratio of the Laplace transform of the output to the Laplace transform of the input with initial conditions of the system set to zero. The arrows on the diagram imply that the block diagram has a unilateral property. In other words, signal can only pass in the direction of the arrows.
A box is the symbol for multiplication; the input quantity is multiplied by the function in the box to obtain the output.With circles indicating summing points (in an algebraic sense) and with boxes or blocks denoting multiplication, any linear mathematical expression may be represented by block-diagram notation, as in Figure for the case of an elementary feedback control system.
The block diagrams of complex feedback control systems usually contain several feedback loops, and they may have to be simplified in order to evaluate an overall transfer function for the system. A few of the block diagram reduction manipulations are given in Table 3.4.1; no attempt is made here to cover all the possibilities.
Q. (i) What are the different types of plots for frequency response in an RC coupled amplifier? (ii) What is a Bode Plot? What are it's uses? The different types of
Applications of Hall Effect: (i) To determine whether semiconductor is of n type or p type. (ii) To determine carrier concentration. (iii) Measurement of carrier mobili
Multiprogramming - Single Processor one Users Many Programs When single processor is used to execute more than one independent program simultaneously the technique is ca
Determine the node voltage by using KCL: Determine the node voltage V and then current flowing through each element by using KCL. Solution Apply KCL at the node whose
Compute the Fourier Transform of the following function: f(x) = exp( - x 2 /(2σ 2 )) cos (2πx/k) where σ and k are constants. What is the minimum sampling rate required
just to put an assignment Give only short details that are important Specially bised clamper
diagram of armeture reaction
Problem statement: A specialized piece of laboratory test equipment, called a spectrum analyzer,will be placed on a mobile push cart. The spectrum analyzer measures the amplitude
A synchronous motor has the following parameters per phase. E=2kv, Eo=5kv, X2=3ohms, and I=700amps. Draw the phasor diagram and determine (a) power angle delta, (b) active po
Q. A bandpass filter circuit is shown in Figure. Develop a PSpice program and use PROBE to obtain a Bode magnitude plot for the transfer function ¯H(f) = ¯Vout/ ¯Vin for frequency
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd