Average function value, Mathematics

Assignment Help:

Average Function Value

The average value of a function f(x) over the interval [a,b] is specified by,

favg = (1/b-a) ab f(x) dx

Proof

We know that the average value of n numbers is only the total of all the numbers divided with n therefore let's start off with this. Let's take the interval [a,b] and divide this in n subintervals each of length,

x = (b -a)/n

Now by all of these intervals select the points x1*, x2*,...., xn* and consider that this doesn't really issue how we select each of these numbers as long as they arrive from the suitable interval.

 We can then calculate the average of the function values f(x1*), f(x2*),.....,f(xn*) by computing,

(f(x1*), f(x2*),.....,f(xn*))/n

Here, from our definition of ?x we can find the formula for n as given in below.

n = (b -a)/ ?x

and we can plug it  in (4) to have,

(f(x1*), f(x2*),.....,f(xn*))/((b -a)/ ?x)

= ([f(x1*), f(x2*),.....,f(xn*)]?x)/(b -a)

= (1/(b -a)) ([f(x1*), f(x2*),.....,f(xn*)]?x)

= (1/(b -a))  490_mean.png    f(xi*)?x

Let's here raise n. Doing that will mean that we are taking the average of increasingly function values in the interval and therefore the larger we select n the better it will approximate the average value of the function.

If we did so take the limit as n goes to infinity we must find the average function value. Or,

favg = limn→∞ (1/b-a)  490_mean.png       f(xi*) ?x = (1/(b -a))      490_mean.png                 ab f(xi*) dx

We can factor the 1/(b -a) out of the limit where we have done and here the limit of the sum must look familiar as which is the definition of the definite integral. Therefore, putting in definite integral we find the formula as we were after.

favg = (1/(b -a)) ab f(x) dx


Related Discussions:- Average function value

Substitute 6 for r in the formula a = r^2 and solve for a, Find the area of...

Find the area of a circle along with a radius of 6 inches. The formula for the area of a circle is A = πr 2 . Use 3.14 for π. Substitute  6 for r in the formula A = πr 2 and solve

Forced - damped vibrations, It is the full blown case where we consider eve...

It is the full blown case where we consider every final possible force which can act on the system. The differential equation in this case, Mu'' + γu'  + ku = F( t) The displ

Christie paid 5% sales tax purchase how much did she spend, Christie purcha...

Christie purchased a scarf marked $15.50 and gloves marked $5.50. Both items were on sale for 20% off the marked price. Christie paid 5% sales tax on her purchase. How much did she

Example of pythagorean theorem, Any 15 foot ladder is resting against the w...

Any 15 foot ladder is resting against the wall. The bottom is at first 10 feet away from the wall & is being pushed in the direction of the wall at a rate of 1 ft/sec. How rapid is

Find the area enclosed between two concentric circles, Find the area enclos...

Find the area enclosed between two concentric circles of radii 3.5cm, 7cm. A third  concentric circle is drawn outside the 7cm circle so that the area enclosed between it and the 7

Pi, is that rational or irrational number

is that rational or irrational number

Probability, Q)  In a lottery ,a person chooses six different natural numbe...

Q)  In a lottery ,a person chooses six different natural numbers at random 1to 20,and if there six numbers match with the six numbers already fixed by the lottery committee ,he win

Difererntial equation, Ask queFind the normalized differential equation whi...

Ask queFind the normalized differential equation which has {x, xex} as its fundamental setstion #Minimum 100 words accepted#

Calculate the area and circumference of a circle, Calculate the area and ci...

Calculate the area and circumference of a circle: Calculate the area and circumference of a circle with a 3" radius.  Solution: A =      πr2

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd