Average function value, Mathematics

Assignment Help:

Average Function Value

The average value of a function f(x) over the interval [a,b] is specified by,

favg = (1/b-a) ab f(x) dx

Proof

We know that the average value of n numbers is only the total of all the numbers divided with n therefore let's start off with this. Let's take the interval [a,b] and divide this in n subintervals each of length,

x = (b -a)/n

Now by all of these intervals select the points x1*, x2*,...., xn* and consider that this doesn't really issue how we select each of these numbers as long as they arrive from the suitable interval.

 We can then calculate the average of the function values f(x1*), f(x2*),.....,f(xn*) by computing,

(f(x1*), f(x2*),.....,f(xn*))/n

Here, from our definition of ?x we can find the formula for n as given in below.

n = (b -a)/ ?x

and we can plug it  in (4) to have,

(f(x1*), f(x2*),.....,f(xn*))/((b -a)/ ?x)

= ([f(x1*), f(x2*),.....,f(xn*)]?x)/(b -a)

= (1/(b -a)) ([f(x1*), f(x2*),.....,f(xn*)]?x)

= (1/(b -a))  490_mean.png    f(xi*)?x

Let's here raise n. Doing that will mean that we are taking the average of increasingly function values in the interval and therefore the larger we select n the better it will approximate the average value of the function.

If we did so take the limit as n goes to infinity we must find the average function value. Or,

favg = limn→∞ (1/b-a)  490_mean.png       f(xi*) ?x = (1/(b -a))      490_mean.png                 ab f(xi*) dx

We can factor the 1/(b -a) out of the limit where we have done and here the limit of the sum must look familiar as which is the definition of the definite integral. Therefore, putting in definite integral we find the formula as we were after.

favg = (1/(b -a)) ab f(x) dx


Related Discussions:- Average function value

Mashed patatos, I have 6 cups of patatos that I have to share with 13 frien...

I have 6 cups of patatos that I have to share with 13 friends write that as the nearest hundredth

How many solutions are there for differential equation, If a differential e...

If a differential equation does have a solution how many solutions are there? As we will see ultimately, this is possible for a differential equation to contain more than one s

Find the length of the parallelogram, The perimeter of a parallelogram is 5...

The perimeter of a parallelogram is 50 cm. The length of the parallelogram is 5 cm more than the width. Find the length of the parallelogram. Let w = the width of the parallelo

Scaling and translation for equations, Q. Scaling and translation for equat...

Q. Scaling and translation for equations? Ans. If you have an equation in the form y= f(x) (if you're not familiar with functions, that just means having "y" on the left s

Y=Theea[sin(inTheeta)+cos(inTheeta)], Y=θ[SIN(INθ)+COS(INθ)],THEN FIND dy÷d...

Y=θ[SIN(INθ)+COS(INθ)],THEN FIND dy÷dθ. Solution)  Y=θ[SIN(INθ)+COS(INθ)] applying u.v rule then dy÷dθ={[ SIN(INθ)+COS(INθ) ] dθ÷dθ }+ {θ[ d÷dθ{SIN(INθ)+COS(INθ) ] }    => SI

Continuity, Continuity : In the last few sections we've been using the te...

Continuity : In the last few sections we've been using the term "nice enough" to describe those functions which we could evaluate limits by just evaluating the function at the po

Quadratic Equations, how to find minimum value of quadratic equation?

how to find minimum value of quadratic equation?

Integral calculus, how to change order and variable in multiple integral

how to change order and variable in multiple integral

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd