Average function value, Mathematics

Assignment Help:

Average Function Value

The average value of a function f(x) over the interval [a,b] is specified by,

favg = (1/b-a) ab f(x) dx

Proof

We know that the average value of n numbers is only the total of all the numbers divided with n therefore let's start off with this. Let's take the interval [a,b] and divide this in n subintervals each of length,

x = (b -a)/n

Now by all of these intervals select the points x1*, x2*,...., xn* and consider that this doesn't really issue how we select each of these numbers as long as they arrive from the suitable interval.

 We can then calculate the average of the function values f(x1*), f(x2*),.....,f(xn*) by computing,

(f(x1*), f(x2*),.....,f(xn*))/n

Here, from our definition of ?x we can find the formula for n as given in below.

n = (b -a)/ ?x

and we can plug it  in (4) to have,

(f(x1*), f(x2*),.....,f(xn*))/((b -a)/ ?x)

= ([f(x1*), f(x2*),.....,f(xn*)]?x)/(b -a)

= (1/(b -a)) ([f(x1*), f(x2*),.....,f(xn*)]?x)

= (1/(b -a))  490_mean.png    f(xi*)?x

Let's here raise n. Doing that will mean that we are taking the average of increasingly function values in the interval and therefore the larger we select n the better it will approximate the average value of the function.

If we did so take the limit as n goes to infinity we must find the average function value. Or,

favg = limn→∞ (1/b-a)  490_mean.png       f(xi*) ?x = (1/(b -a))      490_mean.png                 ab f(xi*) dx

We can factor the 1/(b -a) out of the limit where we have done and here the limit of the sum must look familiar as which is the definition of the definite integral. Therefore, putting in definite integral we find the formula as we were after.

favg = (1/(b -a)) ab f(x) dx


Related Discussions:- Average function value

What is the probability shane rolls a 5, Shane rolls a die numbered 1 by 6....

Shane rolls a die numbered 1 by 6. What is the probability Shane rolls a 5? From 2:15 P.M. to 4:15 P.M. is 2 hours. After that, from 4:15 P.M. to 4:45 P.M. is another half hour

Theorem of continuous functions, Consider the subsequent IVP. y' = f(t,y...

Consider the subsequent IVP. y' = f(t,y) ,        y(t 0 ) = y 0 If f(t,y) and ∂f/∂y are continuous functions in several rectangle a o - h o + h which is included in a

Mensuration, find the diameter of circle whose circumference is 26.51

find the diameter of circle whose circumference is 26.51

Vectors, A triangle has vertices A (-1, 3, 4) B (3, -1, 1) and C (5, 1, 1)....

A triangle has vertices A (-1, 3, 4) B (3, -1, 1) and C (5, 1, 1). The area of ABC is a) 30.1 b) 82.1 c) 9.1 d) 52.1

How far is that person from the starting point, A person travels 10 miles d...

A person travels 10 miles due north, 6 miles due west, 4 miles due north, and 12 miles due east. How far is that person from the initail state? a. 23 miles northeast b. 13 mi

The probability that five randomly selected 3-year old snake, The probabili...

The probability that a randomly selected 3-year old garter snake will live to be 4 years old is .54 (assume results are independent).  What is the probability that five randomly se

Elli[ital paths of celestial bodies, Create a detailed diagram to describe ...

Create a detailed diagram to describe the equation of an ellipse in terms of it’s eccentricity and indicate how the foci and major and minor semi-axes are involved. Y

Graph, Graph A graph G = (V, E) contains a (finite) set that is denote...

Graph A graph G = (V, E) contains a (finite) set that is denote by V, or by V(G) if one wishes to make clear which graph is under consideration, and a collection E, or E(G), o

This year he is 651/4 inches tall how many inches did grow, Last year Jonat...

Last year Jonathan was 603/4 inches tall. This year he is 651/4 inches tall. How many inches did he grow? Subtract to find outthe difference in heights. You will need to borro

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd