Average function value, Mathematics

Assignment Help:

Average Function Value

The average value of a function f(x) over the interval [a,b] is specified by,

favg = (1/b-a) ab f(x) dx

Proof

We know that the average value of n numbers is only the total of all the numbers divided with n therefore let's start off with this. Let's take the interval [a,b] and divide this in n subintervals each of length,

x = (b -a)/n

Now by all of these intervals select the points x1*, x2*,...., xn* and consider that this doesn't really issue how we select each of these numbers as long as they arrive from the suitable interval.

 We can then calculate the average of the function values f(x1*), f(x2*),.....,f(xn*) by computing,

(f(x1*), f(x2*),.....,f(xn*))/n

Here, from our definition of ?x we can find the formula for n as given in below.

n = (b -a)/ ?x

and we can plug it  in (4) to have,

(f(x1*), f(x2*),.....,f(xn*))/((b -a)/ ?x)

= ([f(x1*), f(x2*),.....,f(xn*)]?x)/(b -a)

= (1/(b -a)) ([f(x1*), f(x2*),.....,f(xn*)]?x)

= (1/(b -a))  490_mean.png    f(xi*)?x

Let's here raise n. Doing that will mean that we are taking the average of increasingly function values in the interval and therefore the larger we select n the better it will approximate the average value of the function.

If we did so take the limit as n goes to infinity we must find the average function value. Or,

favg = limn→∞ (1/b-a)  490_mean.png       f(xi*) ?x = (1/(b -a))      490_mean.png                 ab f(xi*) dx

We can factor the 1/(b -a) out of the limit where we have done and here the limit of the sum must look familiar as which is the definition of the definite integral. Therefore, putting in definite integral we find the formula as we were after.

favg = (1/(b -a)) ab f(x) dx


Related Discussions:- Average function value

How many hours does dee work, Susan begins work at 4:00 and Dee starts at 5...

Susan begins work at 4:00 and Dee starts at 5:00. They both finish at the similar time. If Susan works x hours, how many hours does Dee work? Since Susan started 1 hour before

Sum and difference identities, Q. Sum and Difference Identities? Ans. ...

Q. Sum and Difference Identities? Ans. These six sum and difference identities express trigonometric functions of (u ± v) as functions of u and v alone.

Analysis of algorithm running time - undirected graph, Problem. You are giv...

Problem. You are given an undirected graph G = (V,E) in which the edge weights are highly restricted. In particular, each edge has a positive integer weight of either {1, 2, . .

Prove that rb is a tangent to the circle, QR is the tangent to the circle w...

QR is the tangent to the circle whose centre is P. If QA ||  RP and AB is the diameter, prove that RB is a tangent to the circle.

Geometry, what are the parts of angles

what are the parts of angles

Linear equation, The sum of the digit number is 7. If the digits are revers...

The sum of the digit number is 7. If the digits are reversed , the number formed is less than the original number. find the number

Toplogy, Let 0 ! V1 !    ! Vk ! 0 be a long exact sequence of vector spa...

Let 0 ! V1 !    ! Vk ! 0 be a long exact sequence of vector spaces with linear maps. Show that P (??1)i dim Vi = 0.

#tiword problem proportions, The scale of a map is 0.5 in 25mi the actua...

The scale of a map is 0.5 in 25mi the actual distance between two cities is 725mi write a proportion that represents the relationship how far apart will the cities be on the map

Heat loss in cylindrical pipe, which physics law is used to describe heat l...

which physics law is used to describe heat loss in cylindrical pipe

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd