Automata and compiler, Theory of Computation

Assignment Help:

Automata and Compiler

(1) [25 marks] Let N be the last two digits of your student number. Design a finite automaton that accepts the language of strings that end with the last four bits of the binary expansion of N. (1.1) Make a regular expression ? of this language. For example the set of strings that end with 101 is expressed by a regular expression (0+1)*101. (1.2) Make an NFA that accepts this expression ?. You should remove any ?-moves that can be done trivially by inspection. (1.3) Make a subset automaton that accepts the language. (1.4) Perform state minimization on the above automaton.

(2) [25 marks] A CFG is given by S ? aSbS, S ? bSaS, S ? c

(2.1) Draw a syntax chart for this grammar. [5]

(2.2) Write a Python program for the recursive descent parser Trace the parser using two strings of at least 10 symbols, one for an accepted case and one for an unaccepted case. Do the trace using the style in the notes. [20]

(3) [25 marks] A sample program for computing the greatest common divisor by recursive call and its object program are given below. Some sample comments are given.

const a=75, b=55;

var x, y;

procedure gcd;

var w;

begin

if y>0 then begin

w:=y;

y:=x ? (x/y)*y;

x:=w;

call gcd;

end;

end;

begin

x:=a; y:=b;

call gcd;

write(x);

end.

0 jmp 0 21 Jump to 21, start of main

1 jmp 0 2

2 inc 0 4

3 lod 1 4

4 lit 0 0 Load literal 0

5 opr 0 12 Test if y>0

6 jpc 0 20 Jump to 20 if false

7 lod 1 4 Load y

8 sto 0 3 Store in w

9 lod 1 3

10 lod 1 3

11 lod 1 4

12 opr 0 5

13 lod 1 4

14 opr 0 4

15 opr 0 3

16 sto 1 4

17 lod 0 3

18 sto 1 3

19 cal 1 2

20 opr 0 0

21 inc 0 5

22 lit 0 75

23 sto 0 3

24 lit 0 55

25 sto 0 4

26 cal 0 2

27 lod 0 3

28 wrt 0 0 Write stack top

29 opr 0 0


Related Discussions:- Automata and compiler

Local suffix substitution closure, The k-local Myhill graphs provide an eas...

The k-local Myhill graphs provide an easy means to generalize the suffix substitution closure property for the strictly k-local languages. Lemma (k-Local Suffix Substitution Clo

Graph Connectivity, Let G be a graph with n > 2 vertices with (n2 - 3n + 4)...

Let G be a graph with n > 2 vertices with (n2 - 3n + 4)/2 edges. Prove that G is connected.

CNF, S-->AAA|B A-->aA|B B-->epsilon

S-->AAA|B A-->aA|B B-->epsilon

Finite automata, design an automata for strings having exactly four 1''s

design an automata for strings having exactly four 1''s

Example of finite state automaton, The initial ID of the automaton given in...

The initial ID of the automaton given in Figure 3, running on input ‘aabbba' is (A, aabbba) The ID after the ?rst three transitions of the computation is (F, bba) The p

Local and recognizable languages, We developed the idea of FSA by generaliz...

We developed the idea of FSA by generalizing LTk transition graphs. Not surprisingly, then, every LTk transition graph is also the transition graph of a FSA (in fact a DFA)-the one

Tuning machine, design a tuning machine for penidrome

design a tuning machine for penidrome

Convert chomsky normal form into binary form, Suppose G = (N, Σ, P, S) is a...

Suppose G = (N, Σ, P, S) is a reduced grammar (we can certainly reduce G if we haven't already). Our algorithm is as follows: 1. Define maxrhs(G) to be the maximum length of the

Instantaneous description - recognizable language, De?nition (Instantaneous...

De?nition (Instantaneous Description) (for both DFAs and NFAs) An instantaneous description of A = (Q,Σ, δ, q 0 , F) , either a DFA or an NFA, is a pair h q ,w i ∈ Q×Σ*, where

Merging nodes, Another striking aspect of LTk transition graphs is that the...

Another striking aspect of LTk transition graphs is that they are generally extremely ine?cient. All we really care about is whether a path through the graph leads to an accepting

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd