Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Automata and Compiler
(1) [25 marks] Let N be the last two digits of your student number. Design a finite automaton that accepts the language of strings that end with the last four bits of the binary expansion of N. (1.1) Make a regular expression ? of this language. For example the set of strings that end with 101 is expressed by a regular expression (0+1)*101. (1.2) Make an NFA that accepts this expression ?. You should remove any ?-moves that can be done trivially by inspection. (1.3) Make a subset automaton that accepts the language. (1.4) Perform state minimization on the above automaton.
(2) [25 marks] A CFG is given by S ? aSbS, S ? bSaS, S ? c
(2.1) Draw a syntax chart for this grammar. [5]
(2.2) Write a Python program for the recursive descent parser Trace the parser using two strings of at least 10 symbols, one for an accepted case and one for an unaccepted case. Do the trace using the style in the notes. [20]
(3) [25 marks] A sample program for computing the greatest common divisor by recursive call and its object program are given below. Some sample comments are given.
const a=75, b=55;
var x, y;
procedure gcd;
var w;
begin
if y>0 then begin
w:=y;
y:=x ? (x/y)*y;
x:=w;
call gcd;
end;
x:=a; y:=b;
write(x);
end.
0 jmp 0 21 Jump to 21, start of main
1 jmp 0 2
2 inc 0 4
3 lod 1 4
4 lit 0 0 Load literal 0
5 opr 0 12 Test if y>0
6 jpc 0 20 Jump to 20 if false
7 lod 1 4 Load y
8 sto 0 3 Store in w
9 lod 1 3
10 lod 1 3
11 lod 1 4
12 opr 0 5
13 lod 1 4
14 opr 0 4
15 opr 0 3
16 sto 1 4
17 lod 0 3
18 sto 1 3
19 cal 1 2
20 opr 0 0
21 inc 0 5
22 lit 0 75
23 sto 0 3
24 lit 0 55
25 sto 0 4
26 cal 0 2
27 lod 0 3
28 wrt 0 0 Write stack top
29 opr 0 0
The language accepted by a NFA A = (Q,Σ, δ, q 0 , F) is NFAs correspond to a kind of parallelism in the automata. We can think of the same basic model of automaton: an inpu
what are composition and its function of gastric juice
We will specify a computation of one of these automata by specifying the pair of the symbols that are in the window and the remainder of the string to the right of the window at ea
proof ogdens lemma .with example i am not able to undestand the meaning of distinguished position .
How useful is production function in production planning?
It is not hard to see that ε-transitions do not add to the accepting power of the model. The underlying idea is that whenever an ID (q, σ v) directly computes another (p, v) via
One might assume that non-closure under concatenation would imply non closure under both Kleene- and positive closure, since the concatenation of a language with itself is included
To see this, note that if there are any cycles in the Myhill graph of A then L(A) will be infinite, since any such cycle can be repeated arbitrarily many times. Conversely, if the
The Myhill-Nerode Theorem provided us with an algorithm for minimizing DFAs. Moreover, the DFA the algorithm produces is unique up to isomorphism: every minimal DFA that recognizes
The initial ID of the automaton given in Figure 3, running on input ‘aabbba' is (A, aabbba) The ID after the ?rst three transitions of the computation is (F, bba) The p
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd