Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Automata and Compiler
(1) [25 marks] Let N be the last two digits of your student number. Design a finite automaton that accepts the language of strings that end with the last four bits of the binary expansion of N. (1.1) Make a regular expression ? of this language. For example the set of strings that end with 101 is expressed by a regular expression (0+1)*101. (1.2) Make an NFA that accepts this expression ?. You should remove any ?-moves that can be done trivially by inspection. (1.3) Make a subset automaton that accepts the language. (1.4) Perform state minimization on the above automaton.
(2) [25 marks] A CFG is given by S ? aSbS, S ? bSaS, S ? c
(2.1) Draw a syntax chart for this grammar. [5]
(2.2) Write a Python program for the recursive descent parser Trace the parser using two strings of at least 10 symbols, one for an accepted case and one for an unaccepted case. Do the trace using the style in the notes. [20]
(3) [25 marks] A sample program for computing the greatest common divisor by recursive call and its object program are given below. Some sample comments are given.
const a=75, b=55;
var x, y;
procedure gcd;
var w;
begin
if y>0 then begin
w:=y;
y:=x ? (x/y)*y;
x:=w;
call gcd;
end;
x:=a; y:=b;
write(x);
end.
0 jmp 0 21 Jump to 21, start of main
1 jmp 0 2
2 inc 0 4
3 lod 1 4
4 lit 0 0 Load literal 0
5 opr 0 12 Test if y>0
6 jpc 0 20 Jump to 20 if false
7 lod 1 4 Load y
8 sto 0 3 Store in w
9 lod 1 3
10 lod 1 3
11 lod 1 4
12 opr 0 5
13 lod 1 4
14 opr 0 4
15 opr 0 3
16 sto 1 4
17 lod 0 3
18 sto 1 3
19 cal 1 2
20 opr 0 0
21 inc 0 5
22 lit 0 75
23 sto 0 3
24 lit 0 55
25 sto 0 4
26 cal 0 2
27 lod 0 3
28 wrt 0 0 Write stack top
29 opr 0 0
Normal forms are important because they give us a 'standard' way of rewriting and allow us to compare two apparently different grammars G1 and G2. The two grammars can be shown to
Find the Regular Grammar for the following Regular Expression: a(a+b)*(ab*+ba*)b.
The Universality Problem is the dual of the emptiness problem: is L(A) = Σ∗? It can be solved by minor variations of any one of the algorithms for Emptiness or (with a little le
proof of arden''s theoram
Let ? ={0,1} design a Turing machine that accepts L={0^m 1^m 2^m } show using Id that a string from the language is accepted & if not rejected .
phases of operational reaserch
We represented SLk automata as Myhill graphs, directed graphs in which the nodes were labeled with (k-1)-factors of alphabet symbols (along with a node labeled ‘?' and one labeled
The k-local Myhill graphs provide an easy means to generalize the suffix substitution closure property for the strictly k-local languages. Lemma (k-Local Suffix Substitution Clo
what problems are tackled under numerical integration
Sketch an algorithm for the universal recognition problem for SL 2 . This takes an automaton and a string and returns TRUE if the string is accepted by the automaton, FALSE otherwi
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd