Area of a hyperbolic wedge, Mathematics

The unit circle will be parametrized by (cosw, sinw). Provide a point on it, the region cut out by circle, the x-axis, and the line from the origin to this point has covered area w/2.

As you know, the hyperbolic sine and cosine functions are similar to the usual cosine and sine; they follow similar properties. Here's a cool fact that is parallel to the one above.

The parametrization (coshw, sinh w) parametrizes a hyperbola. Provide a point on it, the region cut out by this hyperbola, the x-axis, and the ray to from the origin to that point also has area w/2!

Posted Date: 3/30/2013 3:05:58 AM | Location : United States







Related Discussions:- Area of a hyperbolic wedge, Assignment Help, Ask Question on Area of a hyperbolic wedge, Get Answer, Expert's Help, Area of a hyperbolic wedge Discussions

Write discussion on Area of a hyperbolic wedge
Your posts are moderated
Related Questions
Explain How to Distribute simplifying expressions? The distributive law states that for all numbers a, b, and c, a(b + c)= ab + ac What does this mean in plain language?

hi i would like to ask you what is the answer for [-9]=[=5] grade 7

#question.onstruct/draw geometric shapes with specific condition.

A cyclist, after riding a certain distance, stopped for half an hour to repair his bicycle, after which he completes the whole journey of 30km at half speed in 5 hours.  If the bre

use the bionomial theorem to expand x+2/(2-X)(WHOLE SQUARE 2)

What are some of the interestingmodern developments in cruise control systems that contrast with comparatively basic old systems

I really need help with 30 60 90 right triangles and my last tutor did not make sense to me so can you please help

railway tunnel of radius 3.5 m and angle aob =90 find height of the tunnel

The cost of renting a bike at the local bike shop can be represented through the equation y = 2x + 2, where y is the total cost and x is the number of hours the bike is rented. Whi

Q. Illustrate Field Properties of Numbers? Ans. What the  associative law of addition  states is this: for any numbers a, b, and c,