Approximating solutions to equations newtons method, Mathematics

Assignment Help:

Approximating solutions to equations : In this section we will look at a method for approximating solutions to equations. We all know that equations have to be solved on occasion and actually we've solved out quite a few equations by ourselves to this point.  In all the instances we've looked at to this instance we were capable to in fact find the solutions, however it's not always probable to do that exactly and/or do the work by hand.

That is where this application comes into play.  Therefore, let's see what this application is all about.

1141_Newton’s Method.png

Let's assume that we desire to approximate the solution to f (x) = 0 and let's also assume that we have somehow found an initial approximation to this solution say, x0. This initial approximation is perhaps not all that good and therefore we'd like to discover a better approximation. It is easy enough to do.  Firstly we will get the tangent line to f ( x )at x0.

y = f ( x0 ) + f ′ ( x0 ) ( x - x0 )

Now, take a look at the graph below.

The blue line (if you're reading this in color anyway...) is the tangent line at x0. We can illustrate that this line will cross the x-axis much closer to the actual solution to the equation than x0 does.  Let's call this point where the tangent at x0 crosses the x-axis x1 and we'll utilizes this point as our new approximation to the solution.

Therefore, how do we determine this point? Well we know it's coordinates, ( x1 ,0) , and we know that it's on the tangent line therefore plug this point into the tangent line & solve out for x1 as follows,

0 = f ( x0 ) + f ′ ( x0 ) ( x1 - x0 )

x - x0 = -  f (x0 ) /f ′ ( x0 )

x1 = x0  - (f ( x0 ) /f ′ ( x0 ))

Therefore, we can determine the new approximation provided the derivative isn't zero at the original approximation.

Now we repeat the whole procedure to determine an even better approximation. We build up the tangent line to f ( x ) at x1 and utilizes its root, that we'll call x2, as a new approximation to the actual solution.  If we do it we will arrive at the given formula.

                  x2= x1 - (f ( x1 ) /f ′ ( x1 ))

This point is also illustrated on the graph above and we can illustrated from this graph that if we continue following this procedure will get a sequence of numbers which are getting very close the real solution. This procedure is called Newton's Method.


Related Discussions:- Approximating solutions to equations newtons method

Find the coordinates of c , Plot the points A(2,0) and B (6,0) on a graph p...

Plot the points A(2,0) and B (6,0) on a graph paper. Complete an equilateral triangle ABC such that the ordinate of C be a positive real number .Find the coordinates of C   (Ans: (

Rounding, round 200 to nearest hundreds

round 200 to nearest hundreds

What is geometry formula to estimate distance, Danielle requires knowing th...

Danielle requires knowing the distance around a basketball court. What geometry formula will she use? The perimeter of a rectangle is two times the length plus two times the wi

Fractions, Andre''s boss asked him to arrange bolts placing the shortest bo...

Andre''s boss asked him to arrange bolts placing the shortest bolt near the front 1 and three fourth inch 1 and 5 eigths 1 and 11 sixteenths which is the shortest

Stat, defination of uper boundarie .

defination of uper boundarie .

Example to understand means to count, Place ten pebbles (or any other such ...

Place ten pebbles (or any other such objects) in front of a child who can recite number names upto ten in the correct sequence. Ask him/her to count them aloud while touching the p

I need help with math, can i get help with math just with fractions i want ...

can i get help with math just with fractions i want to catch up with my class

Variation of parameters, In the previous section we looked at the method of...

In the previous section we looked at the method of undetermined coefficients for getting a particular solution to p (t) y′′ + q (t) y′ + r (t) y = g (t)    .....................

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd