Approximating solutions to equations newtons method, Mathematics

Approximating solutions to equations : In this section we will look at a method for approximating solutions to equations. We all know that equations have to be solved on occasion and actually we've solved out quite a few equations by ourselves to this point.  In all the instances we've looked at to this instance we were capable to in fact find the solutions, however it's not always probable to do that exactly and/or do the work by hand.

That is where this application comes into play.  Therefore, let's see what this application is all about.

1141_Newton’s Method.png

Let's assume that we desire to approximate the solution to f (x) = 0 and let's also assume that we have somehow found an initial approximation to this solution say, x0. This initial approximation is perhaps not all that good and therefore we'd like to discover a better approximation. It is easy enough to do.  Firstly we will get the tangent line to f ( x )at x0.

y = f ( x0 ) + f ′ ( x0 ) ( x - x0 )

Now, take a look at the graph below.

The blue line (if you're reading this in color anyway...) is the tangent line at x0. We can illustrate that this line will cross the x-axis much closer to the actual solution to the equation than x0 does.  Let's call this point where the tangent at x0 crosses the x-axis x1 and we'll utilizes this point as our new approximation to the solution.

Therefore, how do we determine this point? Well we know it's coordinates, ( x1 ,0) , and we know that it's on the tangent line therefore plug this point into the tangent line & solve out for x1 as follows,

0 = f ( x0 ) + f ′ ( x0 ) ( x1 - x0 )

x - x0 = -  f (x0 ) /f ′ ( x0 )

x1 = x0  - (f ( x0 ) /f ′ ( x0 ))

Therefore, we can determine the new approximation provided the derivative isn't zero at the original approximation.

Now we repeat the whole procedure to determine an even better approximation. We build up the tangent line to f ( x ) at x1 and utilizes its root, that we'll call x2, as a new approximation to the actual solution.  If we do it we will arrive at the given formula.

                  x2= x1 - (f ( x1 ) /f ′ ( x1 ))

This point is also illustrated on the graph above and we can illustrated from this graph that if we continue following this procedure will get a sequence of numbers which are getting very close the real solution. This procedure is called Newton's Method.

Posted Date: 4/13/2013 2:16:18 AM | Location : United States







Related Discussions:- Approximating solutions to equations newtons method, Assignment Help, Ask Question on Approximating solutions to equations newtons method, Get Answer, Expert's Help, Approximating solutions to equations newtons method Discussions

Write discussion on Approximating solutions to equations newtons method
Your posts are moderated
Related Questions
#questi0+50x1-60-60x0+10on..

help me with how to write sample of proportion using visual basic

solve and graph the solution set 7x-4 > 5x + 0

New England University maintains a data warehouse that stores information about students, courses, and instructors. Members of the university's Board of Trustees are very much inte

How do you calculate compound interest

Suppose that the width of a rectangle is three feet shorter than length and that the perimeter of the rectangle is 84 feet. a)    Set up an equation for the perimeter involving

how do you convert a fraction to a percent?

If A be the area of a right triangle and b one of the sides containing the right angle, prove that the length of the altitude on the hypotenuse is 2  Ab /√ b 4 +4A 2 . An

If two vertices of an equilateral triangle are (0, 0) and (3, 0), find the third vertex. [Ans: 3/2 , 3/√ 3/2  or 3/2, -3√ 3/2] Ans:    OA = OB = AB OA 2 = OB 2 = AB 2

Millie purchased six bottles of soda at $1.15 each. How much did she pay? To ?nd out the total cost of six bottles, you must multiply the cost per bottle through 6; $1.15 × 6 =