Application of sutherland hodgman polygon clipping, Computer Graphics

For good understanding of the application of the rules specified above see the following figure, where the shaded region demonstrates the clipped polygon.

801_Application of Sutherland Hodgman Polygon Clipping.png

Figure: Sutherland-Hodgman Polygon Clipping

Pseudo code for Sutherland - Hodgman Algorithm

Define variables

In VertexArray is the array of input polygon vertices

outVerteArray is the array of output polygon vertices

Nin is the number of entries in inVertexArray

Nout is the number of entries in outVertexArray

n is the number of edges of the clip polygon

ClipEdge[x] is the xth edge of clip polygon defined by a pair of vertices

s, p are the start and end point respectively of current polygon edge

i is the intersection point with a clip boundary

j is the vertex loop counter

Define Functions

AddNewVertex(newVertex, Nout, outVertexArray)

: Adds newVertex to outVertexArray and then updates Nout

InsideTest(testVertex, clipEdge[x])

: Checks whether the vertex lies inside the clip edge or not;

  retures         TRUE is inside else returns FALSE

Intersect (first, second, clipEdge[x])

: Clip polygon edge (first, second) against clipEdge[x], outputs the intersection point

{                                        :  begin main

x = 1

while (x ≤ n)                     : Loop through all the n clip edges

{

Nout = 0                            : Flush the outVertexArray

s = inVertexArray[Nin] : Start with the last vertex in inVertexArray

for j = 1 to Nin do             : Loop through Nin number of polygon vertices (edges)

{

p = inVertexArrray[j]

if InsideTest(p, clipEdge[x] = = TRUE then                     : Case A

and D

if InsideTest(s, clipEdge[x] = = TRUE then

AddNewVertex(p, Nout, outVertexArray)                        : Case A

else

i = Intersect(s, p, clipEdge[x])                           :  Case D

AddNewVertex(i, Nout, outVertexArray)

AddNewVertex(p, Nout, outVertexArray)

end if

else      :  i.e. if InsideTest(p, clipEdge[x] = = FALSE

(Cases 2 and 3)

if InsideTest(s, clipEdge[x]) = =TRUE then                     : Case B

{

 Intersect(s, p, clipEdge[x])

AddNewVertex(i, Nout, outVertexArray)

end if                                        : No action for case C

 

s = p                                         : Advance to next pair of vertices j = j + 1

end if                                         :  end {for}

}

x = x + 1                                     : Proceed to the next ClipEdge[x +1]

Nin = Nout

inVertexArray = outVertexArray            :  The output vertex array for the current clip edge becomes the input vertex array for the next clip edge

}                                        : end while

}                                        : end main

Posted Date: 4/3/2013 3:50:42 AM | Location : United States







Related Discussions:- Application of sutherland hodgman polygon clipping, Assignment Help, Ask Question on Application of sutherland hodgman polygon clipping, Get Answer, Expert's Help, Application of sutherland hodgman polygon clipping Discussions

Write discussion on Application of sutherland hodgman polygon clipping
Your posts are moderated
Related Questions
What are the Developments of CAD Now CAD packages can be linked to 3D ink jet printers which produce an actual prototype model by building up layers/slices in fine powder (suc

why overstriking is harmful.justify


mcqs of illustration in nts test

Explain the process of making of LCD An LCD is made with either a passive matrix or an active matrix (a polysilicate layerprovides thin film transistors at each pixel, allowing

Explain the different input modes used in interactive computer graphics.

Algorithms for Basic Line Segment Plotting There are two important algorithms for basic line segment plotting-DDA algorithm and Bresenham algorithm.  Both the algorithms use th

Image Processing New digital technology has made this possible for the manipulation of multi- dimensional signals along with systems which range from easy digital circuits to

Art: it just like conventional animation, computer animation is additionally a type of art. A multitude of results can be created on a computer than on a piece of paper. An artist

MPEG-1 : MPEG-1 that is Moving Picture Experts Group format 1 is an industry standard encoding format that is broadly used. Its normal format is a frame size of about 352 x 240 an