Application of sutherland hodgman polygon clipping, Computer Graphics

For good understanding of the application of the rules specified above see the following figure, where the shaded region demonstrates the clipped polygon.

801_Application of Sutherland Hodgman Polygon Clipping.png

Figure: Sutherland-Hodgman Polygon Clipping

Pseudo code for Sutherland - Hodgman Algorithm

Define variables

In VertexArray is the array of input polygon vertices

outVerteArray is the array of output polygon vertices

Nin is the number of entries in inVertexArray

Nout is the number of entries in outVertexArray

n is the number of edges of the clip polygon

ClipEdge[x] is the xth edge of clip polygon defined by a pair of vertices

s, p are the start and end point respectively of current polygon edge

i is the intersection point with a clip boundary

j is the vertex loop counter

Define Functions

AddNewVertex(newVertex, Nout, outVertexArray)

: Adds newVertex to outVertexArray and then updates Nout

InsideTest(testVertex, clipEdge[x])

: Checks whether the vertex lies inside the clip edge or not;

  retures         TRUE is inside else returns FALSE

Intersect (first, second, clipEdge[x])

: Clip polygon edge (first, second) against clipEdge[x], outputs the intersection point

{                                        :  begin main

x = 1

while (x ≤ n)                     : Loop through all the n clip edges

{

Nout = 0                            : Flush the outVertexArray

s = inVertexArray[Nin] : Start with the last vertex in inVertexArray

for j = 1 to Nin do             : Loop through Nin number of polygon vertices (edges)

{

p = inVertexArrray[j]

if InsideTest(p, clipEdge[x] = = TRUE then                     : Case A

and D

if InsideTest(s, clipEdge[x] = = TRUE then

AddNewVertex(p, Nout, outVertexArray)                        : Case A

else

i = Intersect(s, p, clipEdge[x])                           :  Case D

AddNewVertex(i, Nout, outVertexArray)

AddNewVertex(p, Nout, outVertexArray)

end if

else      :  i.e. if InsideTest(p, clipEdge[x] = = FALSE

(Cases 2 and 3)

if InsideTest(s, clipEdge[x]) = =TRUE then                     : Case B

{

 Intersect(s, p, clipEdge[x])

AddNewVertex(i, Nout, outVertexArray)

end if                                        : No action for case C

 

s = p                                         : Advance to next pair of vertices j = j + 1

end if                                         :  end {for}

}

x = x + 1                                     : Proceed to the next ClipEdge[x +1]

Nin = Nout

inVertexArray = outVertexArray            :  The output vertex array for the current clip edge becomes the input vertex array for the next clip edge

}                                        : end while

}                                        : end main

Posted Date: 4/3/2013 3:50:42 AM | Location : United States







Related Discussions:- Application of sutherland hodgman polygon clipping, Assignment Help, Ask Question on Application of sutherland hodgman polygon clipping, Get Answer, Expert's Help, Application of sutherland hodgman polygon clipping Discussions

Write discussion on Application of sutherland hodgman polygon clipping
Your posts are moderated
Related Questions
What is riged body transformation matrix? Show that the composition lf two rotation is additive by concatenating the matrix representation of r (theta 2 ) = R (theta1 + theta 2 ) t

3Dstudio - Softwares for computer animation 3DStudio is a 3-D computer graphics programmed. 3DStudio runs on personal computers. This is relatively simple to use. Several schoo

QUESTION (a) In Automatic Contrast Adjustment briefly explain how to stretch an image to its full intensity (b) Write down a mathematical function of a Modified Automatic Con

Role in Education and Training:- A multimedia presentation is an important way to introduce new concepts or described a new technology. Individuals determine it easy to understand


Parametric Continuity Conditions   To ensure a smooth transitions from one section of a piecewise parametric curve to the next, we can impose various continuity conditions at the

What are the advantages of laser printer  High speed, precision and economy. Quality printers. .Cheap to handle Lasts for longer time.


What are the utilizations of Inverse transformation? Provide the Inverse transformation for translation, shearing, reflection, scaling and rotation. Solution: We have observed

Explain the advantage and disadvantage of Raster CRT Advantages Allows solids, not just wireframes Leverages low-cost CRT technology (i.e., TVs) Bright, i.e.