Application of sutherland hodgman polygon clipping, Computer Graphics

Assignment Help:

For good understanding of the application of the rules specified above see the following figure, where the shaded region demonstrates the clipped polygon.

801_Application of Sutherland Hodgman Polygon Clipping.png

Figure: Sutherland-Hodgman Polygon Clipping

Pseudo code for Sutherland - Hodgman Algorithm

Define variables

In VertexArray is the array of input polygon vertices

outVerteArray is the array of output polygon vertices

Nin is the number of entries in inVertexArray

Nout is the number of entries in outVertexArray

n is the number of edges of the clip polygon

ClipEdge[x] is the xth edge of clip polygon defined by a pair of vertices

s, p are the start and end point respectively of current polygon edge

i is the intersection point with a clip boundary

j is the vertex loop counter

Define Functions

AddNewVertex(newVertex, Nout, outVertexArray)

: Adds newVertex to outVertexArray and then updates Nout

InsideTest(testVertex, clipEdge[x])

: Checks whether the vertex lies inside the clip edge or not;

  retures         TRUE is inside else returns FALSE

Intersect (first, second, clipEdge[x])

: Clip polygon edge (first, second) against clipEdge[x], outputs the intersection point

{                                        :  begin main

x = 1

while (x ≤ n)                     : Loop through all the n clip edges

{

Nout = 0                            : Flush the outVertexArray

s = inVertexArray[Nin] : Start with the last vertex in inVertexArray

for j = 1 to Nin do             : Loop through Nin number of polygon vertices (edges)

{

p = inVertexArrray[j]

if InsideTest(p, clipEdge[x] = = TRUE then                     : Case A

and D

if InsideTest(s, clipEdge[x] = = TRUE then

AddNewVertex(p, Nout, outVertexArray)                        : Case A

else

i = Intersect(s, p, clipEdge[x])                           :  Case D

AddNewVertex(i, Nout, outVertexArray)

AddNewVertex(p, Nout, outVertexArray)

end if

else      :  i.e. if InsideTest(p, clipEdge[x] = = FALSE

(Cases 2 and 3)

if InsideTest(s, clipEdge[x]) = =TRUE then                     : Case B

{

 Intersect(s, p, clipEdge[x])

AddNewVertex(i, Nout, outVertexArray)

end if                                        : No action for case C

 

s = p                                         : Advance to next pair of vertices j = j + 1

end if                                         :  end {for}

}

x = x + 1                                     : Proceed to the next ClipEdge[x +1]

Nin = Nout

inVertexArray = outVertexArray            :  The output vertex array for the current clip edge becomes the input vertex array for the next clip edge

}                                        : end while

}                                        : end main


Related Discussions:- Application of sutherland hodgman polygon clipping

Determine the refresh rate in the raster system, Example 1 : Determine the ...

Example 1 : Determine the number of memory bits essential for three bit plane frame buffer for the 512 x 512 raster Solution: Whole memory bits needed are 3 x 512 x 512 = 786,

Polygon tables - curves and surfaces, Polygon Tables - curves and surfaces ...

Polygon Tables - curves and surfaces All polygons are analogous to a graph G (V, E). Remember that the analogy in which a polygon surface can be specified along with as a set

Refresh buffer, what is refresh buffer/ identify the content and organisati...

what is refresh buffer/ identify the content and organisation of the refresh buffer for the case of raster display and vector display.

Sub classes of orthographic projection, Sub Classes of Orthographic Project...

Sub Classes of Orthographic Projection There are three ordinary sub-classes of Orthographic (axonometric) projections as: 1) Isometric: The direction of projection makes

Microsoft Word 2010, what are three features to use to create your flyer to...

what are three features to use to create your flyer to market?

Raster and random scan display technologies, Raster and Random Scan Display...

Raster and Random Scan Display Technologies For display or printing graphics objects, various technologies have been invented. Research and development is still on for getting

What happens while two polygons have similar z value , What happens while t...

What happens while two polygons have similar z value and the z-buffer algorithm is utilized? Solution : z-buffer algorithms, varies colors at a pixel if z(x,y)

Derive the common transformation of parallel projection, Derive the common ...

Derive the common transformation of parallel projection into the xy-plane in the direction of projection d=aI+bJ+cK. Solution: The common transformation of parallel projection

Progressive scan in image capture formats, Progressive Scan: Progressive o...

Progressive Scan: Progressive or non-interlaced scanning is a process which displays, transmits or stores moving images wherein, the lines of all frame are drawn in order. It is i

Interpolation of surface - polygon rendering, Interpolation of surface - Po...

Interpolation of surface - Polygon Rendering Interpolation of surface normals beside the polygonedge between two vertices is demonstrated above in the figure 15. Here the norm

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd