Application of sutherland hodgman polygon clipping, Computer Graphics

Assignment Help:

For good understanding of the application of the rules specified above see the following figure, where the shaded region demonstrates the clipped polygon.

801_Application of Sutherland Hodgman Polygon Clipping.png

Figure: Sutherland-Hodgman Polygon Clipping

Pseudo code for Sutherland - Hodgman Algorithm

Define variables

In VertexArray is the array of input polygon vertices

outVerteArray is the array of output polygon vertices

Nin is the number of entries in inVertexArray

Nout is the number of entries in outVertexArray

n is the number of edges of the clip polygon

ClipEdge[x] is the xth edge of clip polygon defined by a pair of vertices

s, p are the start and end point respectively of current polygon edge

i is the intersection point with a clip boundary

j is the vertex loop counter

Define Functions

AddNewVertex(newVertex, Nout, outVertexArray)

: Adds newVertex to outVertexArray and then updates Nout

InsideTest(testVertex, clipEdge[x])

: Checks whether the vertex lies inside the clip edge or not;

  retures         TRUE is inside else returns FALSE

Intersect (first, second, clipEdge[x])

: Clip polygon edge (first, second) against clipEdge[x], outputs the intersection point

{                                        :  begin main

x = 1

while (x ≤ n)                     : Loop through all the n clip edges

{

Nout = 0                            : Flush the outVertexArray

s = inVertexArray[Nin] : Start with the last vertex in inVertexArray

for j = 1 to Nin do             : Loop through Nin number of polygon vertices (edges)

{

p = inVertexArrray[j]

if InsideTest(p, clipEdge[x] = = TRUE then                     : Case A

and D

if InsideTest(s, clipEdge[x] = = TRUE then

AddNewVertex(p, Nout, outVertexArray)                        : Case A

else

i = Intersect(s, p, clipEdge[x])                           :  Case D

AddNewVertex(i, Nout, outVertexArray)

AddNewVertex(p, Nout, outVertexArray)

end if

else      :  i.e. if InsideTest(p, clipEdge[x] = = FALSE

(Cases 2 and 3)

if InsideTest(s, clipEdge[x]) = =TRUE then                     : Case B

{

 Intersect(s, p, clipEdge[x])

AddNewVertex(i, Nout, outVertexArray)

end if                                        : No action for case C

 

s = p                                         : Advance to next pair of vertices j = j + 1

end if                                         :  end {for}

}

x = x + 1                                     : Proceed to the next ClipEdge[x +1]

Nin = Nout

inVertexArray = outVertexArray            :  The output vertex array for the current clip edge becomes the input vertex array for the next clip edge

}                                        : end while

}                                        : end main


Related Discussions:- Application of sutherland hodgman polygon clipping

Resolution, ?What is Computer Resolution?

?What is Computer Resolution?

Image space -approaches for visible surface determination, Image Space Appr...

Image Space Approach -Approaches for visible surface determination The initial approach as image-space, determines that of n objects in the scene is visible at every pixel in

What is bitmap and what is pixmap, What is bitmap and what is pixmap?  ...

What is bitmap and what is pixmap?  The frame buffer used in the black and white system is called as bitmap which take one bit per pixel. For systems with many bits per pixel,

Global illumination model -polygon rendering, Global illumination model -po...

Global illumination model -polygon rendering This illumination model adds to the local model the light which is reflected from the other surfaces to the current surface. This

Digital audio comprises audio signals, Digital audio comprises audio signal...

Digital audio comprises audio signals stored in a digital format. Particularly, the term encompasses the subsequent: 1)   Audio conversion: 1.   Analogue to digital conversi

Vecgen algorithm, Working of vecgen algorithm with diagram

Working of vecgen algorithm with diagram

Explain bresenham''s circle drawing algorithm, Question 1 Explain Bresenha...

Question 1 Explain Bresenham's Circle Drawing Algorithm Question 2 Derive the matrix for inverse transformation Question 3 Discuss the following Raster Graphic Algorithm

Exceptional cases - orthographic projection, Exceptional cases - Orthograph...

Exceptional cases - Orthographic Projection 1)   We have an Orthographic projection, if f=0, then cot (β) =0 that is β=90 0 . 2)   β =cot-1 (1)=450 and this Oblique projec

Categorization of light resources - point source, Categorization of Light r...

Categorization of Light resources - Point source This is the easiest model for a light emitter. Currently rays from source obey radically diverging ways from the source positi

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd