Algorithmic implementation of multiple stacks, Data Structure & Algorithms

Assignment Help:

So far, we now have been concerned only with the representation of single stack. What happens while a data representation is required for several stacks? Let us consider an array X whose dimension is m. For convenience, we will assume that the indexes of array commence from 1 and end at m. If we contain only 2 stacks to implement in the similar array X, then the solution is simple.

Assume A and B are two stacks. We may define an array stack A with n1 elements and an array stack B along with n2 elements. Overflow might occur when either stacks A contains more than n1 elements or stack B have more than n2 elements.

Assume, rather than that, we define a single array stack along n = n1 + n2 elements for stack A & B together. Let the stack A "grow" to the right, and stack B "grow" to the left. In this case, overflow will takes place only when A and B together have more than n = n1 + n2 elements. It does not matter how several elements individually are there in each stack.

However, in the case of more than 2 stacks, we cannot represent these in the similar way since a one-dimensional array has two fixed points X(1) and X(m) only and each of stack needs a fixed point for its bottom most element. While more than two stacks, say n, are to be sequentially represented, initially we can divide the obtainable memory X(1:m) into n segments. If the sizes of stacks are known, then, we can assign the segments to them in proportion to the probable sizes of the several stacks. If the sizes of the stacks are not known, then, X(1:m) might be divided into equal segments. For each stack i, we will use BM (i) to represent a position one less than the position in X for the bottom most element of that stack. TM(i), 1 < i < n will point to the topmost element of stack i. We will use the boundary condition BM (i) = TM (i) if the ith stack is empty .If we grow the ith stack in lower memory indexes than i+1st stack, then, with roughly equal initial segments we have

BM (i) = TM (i) =   m/n (i - 1), 1 < i < n, as the initial values of BM (i) & TM (i).

All stacks are empty and memory is divided in roughly equal segments.

Figure illustrates an algorithm to add an element to the ith stack. Figure illustrates an algorithm to delete an element from the ith stack.

ADD(i,e)

Step1: if TM (i)=BM (i+1)

Print "Stack is full" and exit

Step2: [Increment the pointer value through one]

TM (i)← TM (i)+1

X(TM (i))← e

Step3: Exit

//remove the topmost elements of stack i.

DELETE(i,e)

Step1: if TM (i)=BM (i)

Print "Stack empty" and exit

Step2: [remove the topmost item]

e←X(TM (i))

TM (i)←TM(i)-1

Step3: Exit


Related Discussions:- Algorithmic implementation of multiple stacks

Define a b-tree, Define a B-Tree Justas AVL trees are balanced binary s...

Define a B-Tree Justas AVL trees are balanced binary search trees, B-trees are balanced M-way search trees. A B-Tree of order M is either the empty tree or it is an M-way searc

Functions and modelling the data flows, Read the scenario (Pickerings Prope...

Read the scenario (Pickerings Properties). (a) List the functions of the system, as perceived by an external user. (b) List the external entities. Note that because we are mo

Linear search, Linear search is not the most efficient way to search an ite...

Linear search is not the most efficient way to search an item within a collection of items. Though, it is extremely simple to implement. Furthermore, if the array elements are arra

Compute the shortest paths to all network nodes, (i)  Consider a system usi...

(i)  Consider a system using flooding with hop counter. Suppose that the hop counter is originally set to the "diameter" (number of hops in the longest path without traversing any

Binary search tree, write an algorithm to delete an element x from binary...

write an algorithm to delete an element x from binary search with time complex

State the term access restrictions - container, What is Access Restriction...

What is Access Restrictions Structured containers with access restrictions only allow clients to add, remove and examine elements at certain locations in their structure. For

Recursive function , Q. Write down the recursive function to count the numb...

Q. Write down the recursive function to count the number of the nodes in the binary tree.    A n s . R ecursive Function to count no. of Nodes in Binary Tree is writt

How conquer technique can be applied to binary trees, How divide and conque...

How divide and conquer technique can be applied to binary trees?  As the binary tree definition itself separates a binary tree into two smaller structures of the similar type,

Which sorting algorithms not have running time of o (n2), Which sorting al...

Which sorting algorithms does not have a worst case running time of  O (n 2 ) ? Merge sort

Explain avl tree, AVL tree An AVL tree is a binary search tree in which...

AVL tree An AVL tree is a binary search tree in which the height of the left and right subtree of the root vary by at most 1 and in which the left and right subtrees are again

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd