Algorithmic implementation of multiple stacks, Data Structure & Algorithms

Assignment Help:

So far, we now have been concerned only with the representation of single stack. What happens while a data representation is required for several stacks? Let us consider an array X whose dimension is m. For convenience, we will assume that the indexes of array commence from 1 and end at m. If we contain only 2 stacks to implement in the similar array X, then the solution is simple.

Assume A and B are two stacks. We may define an array stack A with n1 elements and an array stack B along with n2 elements. Overflow might occur when either stacks A contains more than n1 elements or stack B have more than n2 elements.

Assume, rather than that, we define a single array stack along n = n1 + n2 elements for stack A & B together. Let the stack A "grow" to the right, and stack B "grow" to the left. In this case, overflow will takes place only when A and B together have more than n = n1 + n2 elements. It does not matter how several elements individually are there in each stack.

However, in the case of more than 2 stacks, we cannot represent these in the similar way since a one-dimensional array has two fixed points X(1) and X(m) only and each of stack needs a fixed point for its bottom most element. While more than two stacks, say n, are to be sequentially represented, initially we can divide the obtainable memory X(1:m) into n segments. If the sizes of stacks are known, then, we can assign the segments to them in proportion to the probable sizes of the several stacks. If the sizes of the stacks are not known, then, X(1:m) might be divided into equal segments. For each stack i, we will use BM (i) to represent a position one less than the position in X for the bottom most element of that stack. TM(i), 1 < i < n will point to the topmost element of stack i. We will use the boundary condition BM (i) = TM (i) if the ith stack is empty .If we grow the ith stack in lower memory indexes than i+1st stack, then, with roughly equal initial segments we have

BM (i) = TM (i) =   m/n (i - 1), 1 < i < n, as the initial values of BM (i) & TM (i).

All stacks are empty and memory is divided in roughly equal segments.

Figure illustrates an algorithm to add an element to the ith stack. Figure illustrates an algorithm to delete an element from the ith stack.

ADD(i,e)

Step1: if TM (i)=BM (i+1)

Print "Stack is full" and exit

Step2: [Increment the pointer value through one]

TM (i)← TM (i)+1

X(TM (i))← e

Step3: Exit

//remove the topmost elements of stack i.

DELETE(i,e)

Step1: if TM (i)=BM (i)

Print "Stack empty" and exit

Step2: [remove the topmost item]

e←X(TM (i))

TM (i)←TM(i)-1

Step3: Exit


Related Discussions:- Algorithmic implementation of multiple stacks

Abstract data type-stack, Conceptually, the stack abstract data type mimics...

Conceptually, the stack abstract data type mimics the information kept into a pile on a desk. Informally, first we consider a material on a desk, where we might keep separate stack

Non Recursive Algorithm to Traverse a Binary Tree, Q. Write down a non recu...

Q. Write down a non recursive algorithm to traverse a binary tree in order.                    Ans: N on - recursive algorithm to traverse a binary tree in inorder is as

Post order traversal, Post order traversal: The children of node are vi...

Post order traversal: The children of node are visited before the node itself; the root is visited last. Each node is visited after its descendents are visited. Algorithm fo

C++ function, Write c++ function to traverse the threaded binary tree in in...

Write c++ function to traverse the threaded binary tree in inorder traversal

Characterstics of good algorithm, what are the charaterstics to determine w...

what are the charaterstics to determine weather an algorithm is good or not? explain in detail

B-TREE and AVL tree diffrance, Explain process of B-TREE and what differen...

Explain process of B-TREE and what difference between AVL Tree Using Algorithms

Explain in detail about the abstract data type, Abstract data type The ...

Abstract data type The thing which makes an abstract data type abstract is that its carrier set and its operations are mathematical entities, like geometric objects or numbers;

space, What is Space complexity of an algorithm? Explain

What is Space complexity of an algorithm? Explain.

Explain b tree (binary tree), B Tree Unlike a binary-tree, every node o...

B Tree Unlike a binary-tree, every node of a B-tree may have a variable number of keys and children. The keys are stored in non-decreasing order. Every key has an associated ch

Search on a hashed file, Write a program to simulate searching over a hashe...

Write a program to simulate searching over a hashed file, with different assumptions for the sizeof file pages.Write a program to perform equality search operations on the hashed f

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd