Algorithmic implementation of multiple stacks, Data Structure & Algorithms

Assignment Help:

So far, we now have been concerned only with the representation of single stack. What happens while a data representation is required for several stacks? Let us consider an array X whose dimension is m. For convenience, we will assume that the indexes of array commence from 1 and end at m. If we contain only 2 stacks to implement in the similar array X, then the solution is simple.

Assume A and B are two stacks. We may define an array stack A with n1 elements and an array stack B along with n2 elements. Overflow might occur when either stacks A contains more than n1 elements or stack B have more than n2 elements.

Assume, rather than that, we define a single array stack along n = n1 + n2 elements for stack A & B together. Let the stack A "grow" to the right, and stack B "grow" to the left. In this case, overflow will takes place only when A and B together have more than n = n1 + n2 elements. It does not matter how several elements individually are there in each stack.

However, in the case of more than 2 stacks, we cannot represent these in the similar way since a one-dimensional array has two fixed points X(1) and X(m) only and each of stack needs a fixed point for its bottom most element. While more than two stacks, say n, are to be sequentially represented, initially we can divide the obtainable memory X(1:m) into n segments. If the sizes of stacks are known, then, we can assign the segments to them in proportion to the probable sizes of the several stacks. If the sizes of the stacks are not known, then, X(1:m) might be divided into equal segments. For each stack i, we will use BM (i) to represent a position one less than the position in X for the bottom most element of that stack. TM(i), 1 < i < n will point to the topmost element of stack i. We will use the boundary condition BM (i) = TM (i) if the ith stack is empty .If we grow the ith stack in lower memory indexes than i+1st stack, then, with roughly equal initial segments we have

BM (i) = TM (i) =   m/n (i - 1), 1 < i < n, as the initial values of BM (i) & TM (i).

All stacks are empty and memory is divided in roughly equal segments.

Figure illustrates an algorithm to add an element to the ith stack. Figure illustrates an algorithm to delete an element from the ith stack.

ADD(i,e)

Step1: if TM (i)=BM (i+1)

Print "Stack is full" and exit

Step2: [Increment the pointer value through one]

TM (i)← TM (i)+1

X(TM (i))← e

Step3: Exit

//remove the topmost elements of stack i.

DELETE(i,e)

Step1: if TM (i)=BM (i)

Print "Stack empty" and exit

Step2: [remove the topmost item]

e←X(TM (i))

TM (i)←TM(i)-1

Step3: Exit


Related Discussions:- Algorithmic implementation of multiple stacks

Branch and bound algorithm, Suppose we have a set of N agents and a set of ...

Suppose we have a set of N agents and a set of N tasks.Each agent can only perform exactly one task and there is a cost associated with each assignment. We would like to find out a

Context sensitive f1 help on a field, In what ways we can get the context s...

In what ways we can get the context sensitive F1 help on a field?' Data element documentation. Data element additional text in screen painter. Using the process on help r

Tree Traversal, If preorder traversal and post order traversal is given the...

If preorder traversal and post order traversal is given then how to calculate the pre order traversal. Please illustrate step by step process

R. Studio, I need a person who has a good background in using R. Studio? I...

I need a person who has a good background in using R. Studio? In adition, a person who is good in using algorithms.

Evaluation of arithmetic expressions, Stacks are often used in evaluation o...

Stacks are often used in evaluation of arithmetic expressions. An arithmetic expression contains operands & operators. Polish notations are evaluated through stacks. Conversions of

Quick sort, This is the most extensively used internal sorting algorithm. I...

This is the most extensively used internal sorting algorithm. In its fundamental form, it was invented by C.A.R. Hoare in the year of 1960. Its popularity lies in the easiness of i

Explain backtracking, Explain Backtracking The  principal idea is to co...

Explain Backtracking The  principal idea is to construct solutions single component  at a time  and evaluate such  partially constructed candidates as follows. If a partiall

Selection sort, how to reduce the number of passes in selection sort

how to reduce the number of passes in selection sort

Program to manipulate the data structure, Data Structure and Methods: ...

Data Structure and Methods: Build an array structure to accomodate at least 10 elements. Provide routines for the following: An initializer. A routine to populate (

Preorder - postorder and inorder, 1) preorder, postorder and inorder 2) ...

1) preorder, postorder and inorder 2) The main feature of a Binary Search Tree is that all of the elements whose values is less than the root reside into the nodes of left subtr

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd