Algorithmic implementation of multiple stacks, Data Structure & Algorithms

Assignment Help:

So far, we now have been concerned only with the representation of single stack. What happens while a data representation is required for several stacks? Let us consider an array X whose dimension is m. For convenience, we will assume that the indexes of array commence from 1 and end at m. If we contain only 2 stacks to implement in the similar array X, then the solution is simple.

Assume A and B are two stacks. We may define an array stack A with n1 elements and an array stack B along with n2 elements. Overflow might occur when either stacks A contains more than n1 elements or stack B have more than n2 elements.

Assume, rather than that, we define a single array stack along n = n1 + n2 elements for stack A & B together. Let the stack A "grow" to the right, and stack B "grow" to the left. In this case, overflow will takes place only when A and B together have more than n = n1 + n2 elements. It does not matter how several elements individually are there in each stack.

However, in the case of more than 2 stacks, we cannot represent these in the similar way since a one-dimensional array has two fixed points X(1) and X(m) only and each of stack needs a fixed point for its bottom most element. While more than two stacks, say n, are to be sequentially represented, initially we can divide the obtainable memory X(1:m) into n segments. If the sizes of stacks are known, then, we can assign the segments to them in proportion to the probable sizes of the several stacks. If the sizes of the stacks are not known, then, X(1:m) might be divided into equal segments. For each stack i, we will use BM (i) to represent a position one less than the position in X for the bottom most element of that stack. TM(i), 1 < i < n will point to the topmost element of stack i. We will use the boundary condition BM (i) = TM (i) if the ith stack is empty .If we grow the ith stack in lower memory indexes than i+1st stack, then, with roughly equal initial segments we have

BM (i) = TM (i) =   m/n (i - 1), 1 < i < n, as the initial values of BM (i) & TM (i).

All stacks are empty and memory is divided in roughly equal segments.

Figure illustrates an algorithm to add an element to the ith stack. Figure illustrates an algorithm to delete an element from the ith stack.

ADD(i,e)

Step1: if TM (i)=BM (i+1)

Print "Stack is full" and exit

Step2: [Increment the pointer value through one]

TM (i)← TM (i)+1

X(TM (i))← e

Step3: Exit

//remove the topmost elements of stack i.

DELETE(i,e)

Step1: if TM (i)=BM (i)

Print "Stack empty" and exit

Step2: [remove the topmost item]

e←X(TM (i))

TM (i)←TM(i)-1

Step3: Exit


Related Discussions:- Algorithmic implementation of multiple stacks

Random searching, write a program that find,search&replace a text string

write a program that find,search&replace a text string

Explain the interfaces in ruby, Explain the Interfaces in Ruby Recall...

Explain the Interfaces in Ruby Recall that in object-oriented programming, an interface is a collection of abstract operations that cannot be instantiated. Even though Ruby i

Different ways for representing s graph, W h at are the different ways by...

W h at are the different ways by which we can represent graph?  Represent the graph drawn below using those ways.     T he d iff e r e nt w a y s by

Advantages of first in first out method, Advantages of First in First out (...

Advantages of First in First out (FIFO) Costing Advantages claimed for first in first  out (FIFO)  costing method are: 1. Materials used are drawn from the cost record in

Queue, algorithm for insertion in a queue using pointers

algorithm for insertion in a queue using pointers

Insertion of an element in a linear array, To delete an element in the list...

To delete an element in the list at the end, we can delete it without any difficult. But, assume if we desire to delete the element at the straining or middle of the list, then, we

Explain the halting problem, Explain the halting problem Given a comput...

Explain the halting problem Given a computer program and an input to it, verify whether the program will halt on that input or continue working indefinitely on it.

Characterstics of good algorithm, what are the charaterstics to determine w...

what are the charaterstics to determine weather an algorithm is good or not? explain in detail

Best case, for i=1 to n if a[i}>7 for j=2 to n a[j]=a{j}+j for n=2 to n a...

for i=1 to n if a[i}>7 for j=2 to n a[j]=a{j}+j for n=2 to n a[k]=a[j]+i else if a[1]>4 && a[1] for 2 to a[1] a[j]= a{j]+5 else for 2to n a[j]=a[j]+i ..

Find the complexity of an algorithm, Q.1 What is an algorithm? What are the...

Q.1 What is an algorithm? What are the characteristics of a good algorithm? Q.2 How do you find the complexity of an algorithm? What is the relation between the time and space c

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd