Algorithmic implementation of multiple stacks, Data Structure & Algorithms

Assignment Help:

So far, we now have been concerned only with the representation of single stack. What happens while a data representation is required for several stacks? Let us consider an array X whose dimension is m. For convenience, we will assume that the indexes of array commence from 1 and end at m. If we contain only 2 stacks to implement in the similar array X, then the solution is simple.

Assume A and B are two stacks. We may define an array stack A with n1 elements and an array stack B along with n2 elements. Overflow might occur when either stacks A contains more than n1 elements or stack B have more than n2 elements.

Assume, rather than that, we define a single array stack along n = n1 + n2 elements for stack A & B together. Let the stack A "grow" to the right, and stack B "grow" to the left. In this case, overflow will takes place only when A and B together have more than n = n1 + n2 elements. It does not matter how several elements individually are there in each stack.

However, in the case of more than 2 stacks, we cannot represent these in the similar way since a one-dimensional array has two fixed points X(1) and X(m) only and each of stack needs a fixed point for its bottom most element. While more than two stacks, say n, are to be sequentially represented, initially we can divide the obtainable memory X(1:m) into n segments. If the sizes of stacks are known, then, we can assign the segments to them in proportion to the probable sizes of the several stacks. If the sizes of the stacks are not known, then, X(1:m) might be divided into equal segments. For each stack i, we will use BM (i) to represent a position one less than the position in X for the bottom most element of that stack. TM(i), 1 < i < n will point to the topmost element of stack i. We will use the boundary condition BM (i) = TM (i) if the ith stack is empty .If we grow the ith stack in lower memory indexes than i+1st stack, then, with roughly equal initial segments we have

BM (i) = TM (i) =   m/n (i - 1), 1 < i < n, as the initial values of BM (i) & TM (i).

All stacks are empty and memory is divided in roughly equal segments.

Figure illustrates an algorithm to add an element to the ith stack. Figure illustrates an algorithm to delete an element from the ith stack.

ADD(i,e)

Step1: if TM (i)=BM (i+1)

Print "Stack is full" and exit

Step2: [Increment the pointer value through one]

TM (i)← TM (i)+1

X(TM (i))← e

Step3: Exit

//remove the topmost elements of stack i.

DELETE(i,e)

Step1: if TM (i)=BM (i)

Print "Stack empty" and exit

Step2: [remove the topmost item]

e←X(TM (i))

TM (i)←TM(i)-1

Step3: Exit


Related Discussions:- Algorithmic implementation of multiple stacks

Sorting algorithm, Sorting Algorithm A sorting algorithm is an algorit...

Sorting Algorithm A sorting algorithm is an algorithm which puts elements of a list in a certain order. The most-used orders are numerical order and lexicographical order. Eff

Finite automata, find the grammar of regular expression of (a/?)(a/b)?

find the grammar of regular expression of (a/?)(a/b)?

Search engines - applications of linear and binary search, Search engines e...

Search engines employ software robots to survey the Web & build their databases. Web documents retrieved & indexed through keywords. While you enter a query at search engine websit

Characteristics of good algorithms, What do we mean by algorithm? What are ...

What do we mean by algorithm? What are the characteristics of a good and relevant algorithm? An algorithm is "a step-by-step procedure for finishing some task'' An algorithm c

The smallest element of an array''s index, The smallest element of an array...

The smallest element of an array's index is called its Lower bound.

Number of operations possible on ordered lists and arrays, Q. Enumerate num...

Q. Enumerate number of operations possible on ordered lists and arrays.  Write procedures to insert and delete an element in to array.

Header linked list, creation,insertion,deletion of header linked list using...

creation,insertion,deletion of header linked list using c.

Explain binary search tree, Binary search tree. A binary search tree is...

Binary search tree. A binary search tree is a binary tree that is either empty or in which every node having a key that satisfies the following conditions: - All keys (if an

Define tractable and intractable problems, Define tractable and intractable...

Define tractable and intractable problems Problems that can be solved in polynomial time are known as tractable problems, problems that cannot be solved in polynomial time are

BINARY SEARCH, GIVE TRACE OF BINARY SEARCH ALGORITHM BY USING A SUITABLE EX...

GIVE TRACE OF BINARY SEARCH ALGORITHM BY USING A SUITABLE EXAMPLE.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd