Algorithm to delete the specific node from binary searchtree, Data Structure & Algorithms

Assignment Help:

Q. Write down an algorithm to delete the specific node from binary search tree. Trace the algorithm to delete a node (10) from the following given tree.

1882_binary tree.png

Ans.

Algorithm for Delete ting the specific Node From the Binary Search Tree

To delete the specific node following possibilities may arise

1)      Node id a terminal node

2)      Node have only one child

3)      Node having 2 children.

DEL(INFO, LEFT, RIGT, ROOT, AVAIL, ITEM)

A binary search tree T is in the memory, and an ITEM of information is given as follows.
 This algorithm deletes the specific ITEM from the tree.

1. [to Find the locations of ITEM and its parent] Call FIND(INFO, RIGHT, ROOT, ITEM, LOC, PAR).

2. [ITEM in tree?]

if LOC=NULL, then write : ITEM not in tree, and Exit.

3. [Delete node containing ITEM.]

if RIGHT[LOC] != NULL and LEFT[LOC] !=NULL then:

Call CASEB(INFO,LEFT,RIGHT,ROOT,LOC,PAR). Else:

Call CASEA (INFO,LEFT,RIGHT,ROOT,LOC,PAR).

[End of if structure.]

4. [Return deleted node to AVAIL list.] Set LEFT[LOC]:=AVAIL and AVAIL:=LOC.

5. Exit.

CASEB(INFO,LEFT,RIGHT,ROOT,LOC,PAR)

This procedure will delete the node N at LOC location, where N has two children. The pointer PAR gives us the location of the parent of N, or else PAR=NULL indicates that N is a root node. The pointer SUC gives us the location of the inorder successor of N, and PARSUC gives us the location of the parent of the inorder successor.

1. [Find SUC and PARSUC.]

(a) Set PTR: = RIGHT[LOC] and SAVE:=LOC. (b) Repeat while LEFT[PTR] ≠  NULL:

Set SAVE:=PTR and PTR:=LEFT[PTR]. [End of loop.]

(c) Set SUC : = PTR and PARSUC:=SAVE.

2. [Delete inorder successor]

Call CASEA (INFO, LEFT, RIGHT, ROOT, SUC, PARSUC).

3. [Replace node N by its inorder successor.] (a) If PAR≠NULL, then:

If LOC = LEFT[PAR], then: Set LEFT[PAR]:=SUC.

Else:

Set RIGHT[PAR]: = SUC. [End of If structure.]

Else:

Set ROOT: = SUC. [End of If structure.]

(b) Set LEFT[SUC]:= LEFT [LOC] and

RIGHT[SUC]:=RIGHT[LOC]

4. Return.

CASEA(INFO, LEFT, RIGHT, ROOT, LOC, PAR)

This procedure deletes the node N at LOC location, where N does not contain two children. The pointer PAR gives us the location of the parent of N, or else PAR=NULL indicates that N is a root node. The pointer CHILD gives us the location of the only child of the N, or else CHILD = NULL indicates N has no children.

1. [Initializes CHILD.]

If LEFT[LOC] = NULL and RIGHT[LOC] = NULL, then: Set CHILD:=NULL.

Else if LEFT[LOC]≠NULL, then:

Set CHILD: = LEFT[LOC].

Else

Set CHILD:=RIGHT[LOC] [End of If structue.]

2. If PAR ≠  NULL, then:

If LOC = LEFT [PAR], then:

Set LEFT[PAR]:=CHILD.

Else:

Set RIGHT[PAR]:CHILD = CHILD [End of If structure.]

Else:

Set ROOT : = CHILD.

[End of If structure.]

3. Return.

Inorder traversal of the tree is

4 6 10 11 12 14 15 20

To delete 10

PAR = Parent of 10 ie 15

SUC = inorder succ of 10 ie. 11

PARSUC = Parent of inorder succ ie 12

PTR = RIGHT [LOC]

Address of 12    SAVE: = address of 10

SAVE: = address of 12

PTR = address of 11

SUC = ADDRESS OF 11

PAR SUCC:= ADDRESS OF 12

CHILD = NULL

LEFT [PARSUC] = CHILD= NULL LEFT [PAR]= ADDRESS OF 11

LEFT [SUC] = LEFT [LOC] = ADDRESS OF 6

RIGHT [SUC] = RIGHT[LOC] = ADDRESS OF 12


Related Discussions:- Algorithm to delete the specific node from binary searchtree

Sequential search of a list is preferred over binary search, What are the c...

What are the conditions under which sequential search of a list is preferred over binary search? Sequential Search is a preferred over binary search when the list is unordered

Recursive implementation of binary tree traversals, There are three typical...

There are three typical ways of recursively traversing a binary tree. In each of these, the left sub-trees & right sub-trees are visited recursively and the distinguishing feature

Search on a heap file, Consider the file " search_2013 ". This is a text fi...

Consider the file " search_2013 ". This is a text file containingsearch key values; each entry is a particular ID (in the schema given above). You are tosimulate searching over a h

Program, What is a first-in-first-out data structure ? Write algorithms to...

What is a first-in-first-out data structure ? Write algorithms to perform the following operations on it – create, insertion, deletion, for testing overflow and empty conditions.

Effective way of storing two symmetric matrices, Explain an efficient and e...

Explain an efficient and effective way of storing two symmetric matrices of the same order in the memory. A n-square matrix array will be symmetric if a[j][k]=a[k][j] for all j

Array implementation of lists, In the array implementation of the lists, we...

In the array implementation of the lists, we will use the array to hold the entries and a separate counter to keep track of the number of positions are occupied. A structure will b

Flowchart, conversion of centrigral to frahenhit

conversion of centrigral to frahenhit

Asymptotic notation, Asymptotic notation Let us describe a few function...

Asymptotic notation Let us describe a few functions in terms of above asymptotic notation. Example: f(n) = 3n 3 + 2n 2 + 4n + 3 = 3n 3 + 2n 2 + O (n), as 4n + 3 is of

Find the optimal control, 1. Use the Weierstrass condition, find the (Stron...

1. Use the Weierstrass condition, find the (Strongly) minimizing curve and the value of J min for the cases where x(1) = 0, x(2) = 3. 2. The system = x 1 + 2u; where

Steps of pre-order traversal, Pre-order Traversal The method of doing a...

Pre-order Traversal The method of doing a pre-order traversal iteratively then has the several steps(suppose that a stack is available to hold pointers to the appropriate nodes

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd