Algorithm to delete the specific node from binary searchtree, Data Structure & Algorithms

Assignment Help:

Q. Write down an algorithm to delete the specific node from binary search tree. Trace the algorithm to delete a node (10) from the following given tree.

1882_binary tree.png

Ans.

Algorithm for Delete ting the specific Node From the Binary Search Tree

To delete the specific node following possibilities may arise

1)      Node id a terminal node

2)      Node have only one child

3)      Node having 2 children.

DEL(INFO, LEFT, RIGT, ROOT, AVAIL, ITEM)

A binary search tree T is in the memory, and an ITEM of information is given as follows.
 This algorithm deletes the specific ITEM from the tree.

1. [to Find the locations of ITEM and its parent] Call FIND(INFO, RIGHT, ROOT, ITEM, LOC, PAR).

2. [ITEM in tree?]

if LOC=NULL, then write : ITEM not in tree, and Exit.

3. [Delete node containing ITEM.]

if RIGHT[LOC] != NULL and LEFT[LOC] !=NULL then:

Call CASEB(INFO,LEFT,RIGHT,ROOT,LOC,PAR). Else:

Call CASEA (INFO,LEFT,RIGHT,ROOT,LOC,PAR).

[End of if structure.]

4. [Return deleted node to AVAIL list.] Set LEFT[LOC]:=AVAIL and AVAIL:=LOC.

5. Exit.

CASEB(INFO,LEFT,RIGHT,ROOT,LOC,PAR)

This procedure will delete the node N at LOC location, where N has two children. The pointer PAR gives us the location of the parent of N, or else PAR=NULL indicates that N is a root node. The pointer SUC gives us the location of the inorder successor of N, and PARSUC gives us the location of the parent of the inorder successor.

1. [Find SUC and PARSUC.]

(a) Set PTR: = RIGHT[LOC] and SAVE:=LOC. (b) Repeat while LEFT[PTR] ≠  NULL:

Set SAVE:=PTR and PTR:=LEFT[PTR]. [End of loop.]

(c) Set SUC : = PTR and PARSUC:=SAVE.

2. [Delete inorder successor]

Call CASEA (INFO, LEFT, RIGHT, ROOT, SUC, PARSUC).

3. [Replace node N by its inorder successor.] (a) If PAR≠NULL, then:

If LOC = LEFT[PAR], then: Set LEFT[PAR]:=SUC.

Else:

Set RIGHT[PAR]: = SUC. [End of If structure.]

Else:

Set ROOT: = SUC. [End of If structure.]

(b) Set LEFT[SUC]:= LEFT [LOC] and

RIGHT[SUC]:=RIGHT[LOC]

4. Return.

CASEA(INFO, LEFT, RIGHT, ROOT, LOC, PAR)

This procedure deletes the node N at LOC location, where N does not contain two children. The pointer PAR gives us the location of the parent of N, or else PAR=NULL indicates that N is a root node. The pointer CHILD gives us the location of the only child of the N, or else CHILD = NULL indicates N has no children.

1. [Initializes CHILD.]

If LEFT[LOC] = NULL and RIGHT[LOC] = NULL, then: Set CHILD:=NULL.

Else if LEFT[LOC]≠NULL, then:

Set CHILD: = LEFT[LOC].

Else

Set CHILD:=RIGHT[LOC] [End of If structue.]

2. If PAR ≠  NULL, then:

If LOC = LEFT [PAR], then:

Set LEFT[PAR]:=CHILD.

Else:

Set RIGHT[PAR]:CHILD = CHILD [End of If structure.]

Else:

Set ROOT : = CHILD.

[End of If structure.]

3. Return.

Inorder traversal of the tree is

4 6 10 11 12 14 15 20

To delete 10

PAR = Parent of 10 ie 15

SUC = inorder succ of 10 ie. 11

PARSUC = Parent of inorder succ ie 12

PTR = RIGHT [LOC]

Address of 12    SAVE: = address of 10

SAVE: = address of 12

PTR = address of 11

SUC = ADDRESS OF 11

PAR SUCC:= ADDRESS OF 12

CHILD = NULL

LEFT [PARSUC] = CHILD= NULL LEFT [PAR]= ADDRESS OF 11

LEFT [SUC] = LEFT [LOC] = ADDRESS OF 6

RIGHT [SUC] = RIGHT[LOC] = ADDRESS OF 12


Related Discussions:- Algorithm to delete the specific node from binary searchtree

Red black tree, red black tree construction for 4,5,6,7,8,9

red black tree construction for 4,5,6,7,8,9

Importance of object-oriented over java, Importance of Object-Oriented over...

Importance of Object-Oriented over java Java is basically based on OOP notions of classes and objects. Java uses a formal OOP type system that should be obeyed at compile-t

Explain merge sort, Question 1 Explain the use of algorithms in computing ...

Question 1 Explain the use of algorithms in computing Question 2 Explain time complexity and space complexity of an algorithm Question 3 Explain how you can analyz

Files structures, The structures of files vary from operating system to ope...

The structures of files vary from operating system to operating system. In this unit, we will discuss the fundamentals of file structures with the generic file organisations. A

Linear node is given by means of pointer, A linear collection of data eleme...

A linear collection of data elements where the linear node is given by means of pointer is known as Linked list

Heights of 500 students `Algorithms`, Write an algorithm, using a flowchart...

Write an algorithm, using a flowchart, which inputs the heights of all 500 students and outputs the height of the tallest person and the shortest p erson in the school.

Define merge sort, Define Merge Sort  Merge sort is a perfect example ...

Define Merge Sort  Merge sort is a perfect example of a successful application of the divide and conquer method. It sorts a given array A[0...n-l] by separating it into two ha

Explain backtracking, Explain Backtracking The  principal idea is to co...

Explain Backtracking The  principal idea is to construct solutions single component  at a time  and evaluate such  partially constructed candidates as follows. If a partiall

Algorithm for sorting a deck of cards, What is wrong with the following alg...

What is wrong with the following algorithm for sorting a deck of cards (considering the basic properties of algorithms)? I. Put the cards together into a pile II. For each ca

Find the adjacency matrix, Consider the digraph G with three vertices P1,P2...

Consider the digraph G with three vertices P1,P2 and P3 and four directed edges, one each from P1 to P2, P1 to P3, P2 to P3 and P3 to P1. a. Sketch the digraph. b. Find the a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd