## Algorithm of decorated graph, Data Structure & Algorithms

Assignment Help:

As we talked in class, a program with two integer variables is universal. Now, we consider a special form of four variableprograms. Let G = (V; E) be a directed graph, where V is a finite set of nodes, and E ⊆V X V be the set of (directed) edges (arcs). In particular, we identify a node as the initial node, and a node as the final node. Let x1; x2; x3; x4 be four non-negative integer variables. Further, we decorate each edge with one of the following instructions: (1 ≤i≤ 4)

xi:= xi + 1;

xi:= 0;

xi == c? (c is a non-negative integer)

The result is called a decorated graph (we still use G to denote it). The semantics of a decorated graph is straightforward. It executes from the initial node with x1; x2; x3; x4 being 0, then walks along the graph. G can walk an edge (v, v') if all of the following conditions are satisfied: for each 1 ≤i≤4,

• if the edge is decorated with instruction xi:= xi + 1 for some i, the new value of xi is one more than the old value, and all the other xj(j ≠i) is unchanged.
• if the edge is decorated with instruction xi:= 0, the new value of xi is set to 0, and all the other xj (j ≠i) is unchanged.
• if the edge is decorated with instruction xi == c?, the value of xi must be c.

If at a node, G has more than one edge that can be walked, then G non-deterministically chooses one. If at a node G has no edge that can be walked, then G crashes (i.e., do not walk any further). We say that a decorated graph G is terminating if G can walk from an initial node to a final node and at the final node the values of x1; x2; x3; x4 satisfy the following constraint:

x1 = x2 = x3 = x4:

Show me an algorithm that answers (yes/no) whether G is terminating or not. (To correct a common misunderstanding, I shall point out that a walk could be arbitrarily long even though there are only 10 nodes in the graph! So, don't even try depth/breadth first search.)

#### Standard ways of traversing a graph, Q. Which are the two standard ways of ...

Q. Which are the two standard ways of traversing a graph?  Explain them with an example of each.  Ans:   T he two ways of traversing a graph are written below

#### Explain thread, Thread By changing the NULL lines in a binary tree to ...

Thread By changing the NULL lines in a binary tree to special links known as threads, it is possible to perform traversal, insertion and deletion without using either a stack

algorithm format

#### A binary tree of depth "d" is an almost complete binary tree, A binary tree...

A binary tree of depth "d" is an almost complete binary tree if  A) Every leaf in the tree is either at level "d" or at level "d-1"  B)  For any node "n" in the tree with a

#### Binary search trees, A Binary Search Tree is binary tree which is either em...

A Binary Search Tree is binary tree which is either empty or a node having a key value, left child & right child. By analyzing the above definition, we notice that BST comes int

#### Hash clash, Q. What do you understand by the term by hash clash? Explain in...

Q. What do you understand by the term by hash clash? Explain in detail any one method to resolve the hash collisions.

#### What is a data structure, Question 1 What is a data structure? Discuss bri...

Question 1 What is a data structure? Discuss briefly on types of data structures Question 2 Explain the insertion and deletion operation of linked list in detail Question

#### Explain the different types of traversal on binary tree, Question 1 What i...

Question 1 What is a data structure? Discuss briefly on types of data structures Question 2 Explain the insertion and deletion operation of linked list in detail Qu

#### Search on a hashed file, Write a program to simulate searching over a hashe...

Write a program to simulate searching over a hashed file, with different assumptions for the sizeof file pages.Write a program to perform equality search operations on the hashed f

#### Complexity, Complexity : How do the resource needs of a program or algorith...

Complexity : How do the resource needs of a program or algorithm scale (the growth of resource requirements as a function of input). In other words, what happens with the performan  