Algorithm of decorated graph, Data Structure & Algorithms

As we talked in class, a program with two integer variables is universal. Now, we consider a special form of four variableprograms. Let G = (V; E) be a directed graph, where V is a finite set of nodes, and E ⊆V X V be the set of (directed) edges (arcs). In particular, we identify a node as the initial node, and a node as the final node. Let x1; x2; x3; x4 be four non-negative integer variables. Further, we decorate each edge with one of the following instructions: (1 ≤i≤ 4)

xi:= xi + 1;

xi:= 0;

xi == c? (c is a non-negative integer)

The result is called a decorated graph (we still use G to denote it). The semantics of a decorated graph is straightforward. It executes from the initial node with x1; x2; x3; x4 being 0, then walks along the graph. G can walk an edge (v, v') if all of the following conditions are satisfied: for each 1 ≤i≤4,

  • if the edge is decorated with instruction xi:= xi + 1 for some i, the new value of xi is one more than the old value, and all the other xj(j ≠i) is unchanged.
  • if the edge is decorated with instruction xi:= 0, the new value of xi is set to 0, and all the other xj (j ≠i) is unchanged.
  • if the edge is decorated with instruction xi == c?, the value of xi must be c.

If at a node, G has more than one edge that can be walked, then G non-deterministically chooses one. If at a node G has no edge that can be walked, then G crashes (i.e., do not walk any further). We say that a decorated graph G is terminating if G can walk from an initial node to a final node and at the final node the values of x1; x2; x3; x4 satisfy the following constraint:

x1 = x2 = x3 = x4:

Show me an algorithm that answers (yes/no) whether G is terminating or not. (To correct a common misunderstanding, I shall point out that a walk could be arbitrarily long even though there are only 10 nodes in the graph! So, don't even try depth/breadth first search.)

Posted Date: 3/22/2013 4:06:38 AM | Location : United States







Related Discussions:- Algorithm of decorated graph, Assignment Help, Ask Question on Algorithm of decorated graph, Get Answer, Expert's Help, Algorithm of decorated graph Discussions

Write discussion on Algorithm of decorated graph
Your posts are moderated
Related Questions
Implementations of Kruskal's algorithm for Minimum Spanning Tree. You are implementing Kruskal's algorithm here. Please implement the array-based Union-Find data structure.

Midsquare Method :- this operates in 2 steps. In the first step the square of the key value K is taken. In the 2nd step, the hash value is obtained by deleting digits from ends of

Q. Execute your algorithm to convert the infix expression to the post fix expression with the given infix expression as input Q = [(A + B)/(C + D) ↑ (E / F)]+ (G + H)/ I

H o w can you r ot a t e a B i n a r y Tr e e? E x pl a i n r i g h t a n d l eft r ot a tion s by taking an e x a mpl e.   If after

In the earlier unit, we have discussed about the arrays. Arrays are data structures of fixed size. Insertion & deletion involves reshuffling of array elements. Thus, arraymanipulat

merge sort process for an example array {38, 27, 43, 3, 9, 82, 10}. If we take a closer look at the diagram, we can see that the array is recursively divided in two halves till the

In-order Traversal  This process when executed iteratively also needs a stack and a Boolean to prevent the implementation from traversing any portion of a tree twice. The gener

What is quick sort? Quick sort is a sorting algorithm that uses the idea if split and conquer. This algorithm chooses an element called as pivot element; search its position in

i need the full concept of it... please can anyone provide

Q. Enumerate number of operations possible on ordered lists and arrays.  Write procedures to insert and delete an element in to array.