find shortest path from a to z using dijkstra''s algorithm., Data Structure & Algorithms

Q. In the given figure find the shortest path from A to Z using Dijkstra's Algorithm. 

2234_Dijkstra algorithm.png

 

Ans:

1.  P=φ;  T={A,B,C,D,E,F,G,H,I,J,K,L,M,Z}

Let L(A)=0 and L(x)=∞ for all x in T ( L(x) denotes label of x)

2.  P={A}, T={B,C,D,E,F,G,H,I,J,K,L,M,Z} A≠Z so calculate the new labels for vertices in T

 

L(B)=min(∞, 0+2)=2

L(H)=min(∞, 0+2)=2

L(C)=min(∞, 0+∞)=∞

L(I)=∞

L(D)=∞

L(J)=∞

L(E)=min(∞, 0+2)=2

L(K)=min(∞, 0+2)=2

L(F)=∞

L(L)=∞

L(G)=∞

L(M)= ∞ ; L(Z)= ∞

 

3.  v=B, is the vertex with the smallest label, L(v)=2

P={A,B}, T={C,D,E,F,G,H,I,J,K,L,M,Z} B≠Z so calculate the new labels for vertices in T

 

L(C)=min(∞, 2+4)=6

L(I)=min(∞, 2+2)=4

L(D)=∞

L(J)=∞

L(E)=min(2,2+∞)=2

L(K)=min(2,2+∞)=2

L(F)=∞

L(L)=∞

L(G)=∞

L(M)=∞

L(H)=min(2,2+1)=2

L(Z)= ∞

 

4.  v=E, vertex containing the smallest label, L(v)=2

 

 

P={A,B,E}, T={C,D,F,G,H,I,J,K,L,M,Z} B≠Z so calculate  the new labels for vertices in T

L(C)=min(6, 2+∞)=6

L(J)= ∞

L(D)=∞

L(K)=min(2,2+2)=2

L(F)=min(∞,2+3)=5

 

L(G)=∞

L(L)=∞

L(H)=∞

L(M)=∞

L(I)= ∞

L(Z)= ∞

 

 

5.  v=K, vertex containing the smallest label, L(v)=2

P={A,B,E,K}, T={C,D,F,G,H,I,J,L,M,Z} K≠Z so calculate the new labels for vertices in T

L(C)=min(6, 2+∞)=6

L(J)= ∞

L(D)=∞

L(L)=min(∞,2+4)=6

L(F)=min(5,2+2)=4

L(M)=∞

L(G)=∞

L(Z)= ∞

L(H)=min(∞,2+2)=4

 

L(I)= min(∞,2+3)=5

 

 

6.  v=F, vertex containing the smallest label, L(v)=4

P={A,B,E,K,F}, T={C,D,G,H,I,J,L,M,Z} K≠Z so calculate the new labels for vertices in T

L(C)=min(6, 4+∞)=6

L(I)= min(5,4+∞)=5

L(D)=∞

L(L)=min(6,4+1)=5

L(G)=min(∞,4+4)=8

L(M)=min(∞,4+3)=7

L(G)=∞

L(Z)= ∞

L(H)=min(4,4+∞)=4

L(J)= ∞

 

7.  v=H, vertex containing the smallest label, L(v)=4

P={A,B,E,K,F,H}, T={C,D,G,I,J,L,M,Z}

 

K≠Z so calculate the new labels for vertices in T

L(C)=min(6, 4+∞)=6

L(J)= min(∞,4+∞)=∞

L(D)=∞

L(L)=min(5,4+∞)=5

L(G)=min(8,4+∞)=8

L(M)=min(7,4+∞)=7

L(I)=min(5,4+4)=5

L(Z)= ∞

 

8.  v=I, vertex containing the smallest label, L(v)=5

P={A,B,E,K,F,H,I}, T={C,D,G,J,L,M,Z} I≠Z so calculate the new labels for vertices in T

L(C)=min(6, 5+2)=6

L(L)= min(5,5+1)=5

L(D)=∞

L(M)=min(7,5+∞)=7

L(G)=min(8,5+∞)=8

L(Z)=∞

L(J)=min(∞,5+5)=10

 

 

9.  v=L, vertex containing the smallest label, L(v)=5

P={A,B,E,K,F,H,I,L}, T={C,D,G,J,M,Z}

L≠Z so calculate the new labels for vertices in T

L(C)=min(6, 5+∞)=6

L(J)= min(10,5+2)=7

L(D)=∞

L(M)=min(7,5+3)=7

L(G)=min(8,5+∞)=8

L(Z)=∞

 

10. v=C, vertex containing the smallest label, L(v)=6

P={A,B,E,K,F,H,I,L,C}, T={D,G,J,M,Z} C≠Z so calculate the new labels for vertices in T

L(D)=min(∞,6+3)=9

L(M)= min(7,6+∞)=7

L(G)=min(8,6+∞)=8

L(Z)=∞

L(J)=min(7,6+4)=7

 

 

11. v=J, vertex containing the  smallest label, L(v)=7

P={A,B,E,K,F,H,I,L,C,J}, T={D,G,M,Z} J≠Z so calculate the new labels for vertices in T

L(D)=min(9,7+2)=9

L(M)= min(7,7+2)=7

L(G)=min(8,7+∞)=8

L(Z)=min(∞,7+1)=8

 

12. v=M, vertex containing the smallest label, L(v)=7

P={A,B,E,K,F,H,I,L,C,J,M}, T={D,G,Z} M≠Z so calculate the new labels for vertices in T

L(D)=min(9,7+∞)=9

L(Z)= min(8,7+3)=8

L(G)=min(8,7+1)=8

 

13. v=G, vertex containing the smallest label, L(v)=8

P={A,B,E,K,F,H,I,L,C,J,M,G}, T={D,Z}

G≠Z so calculate the new labels for vertices in T L(D)=min(9,8+∞)=9                                                                          L(Z)= min(8,8+1)=8

 

14. v=z, so now  we stop here,  the Shortest distance is 8

Backtracking all the steps we get, shortest path as: A-K-F-L-J-Z

Posted Date: 7/10/2012 6:53:36 AM | Location : United States







Related Discussions:- find shortest path from a to z using dijkstra''s algorithm., Assignment Help, Ask Question on find shortest path from a to z using dijkstra''s algorithm., Get Answer, Expert's Help, find shortest path from a to z using dijkstra''s algorithm. Discussions

Write discussion on find shortest path from a to z using dijkstra''s algorithm.
Your posts are moderated
Related Questions
What is the difference between a grounded header link list and a circular header link list? A header linked list is a linked list which always having a special node, known as t

Suppose there are exactly five packet switches (Figure 4) between a sending host and a receiving host connected by a virtual circuit line (shown as dotted line in figure 4). The tr

Determine in brief the Painter Algorithm a) The farthest polygon, namely the rectangle PQRS, is stored first. (b) The next farthest, the quadrilateral ABCD, is superpo

Consistent Heuristic Function - Graph Search Recall the notions of consistency and admissibility for an A* search heuristic. a. Consider a graph with four nodes S, A, B, C,

Indexed Sequential Files An index is inserted to the sequential file to provide random access. An overflow area required to be maintained to permit insertion in sequence. I

Define the External Path Length The External Path Length E of an extended binary tree is explained as the sum of the lengths of the paths - taken over all external nodes- from

In this project you will write a program to produce a discrete time simulation of a queue as shown in Fig. 1. Time is slotted on the input and the output. Each input packet follows

A full binary tree with n leaves have:- 2n -1 nodes.

Q. Enumerate number of operations possible on ordered lists and arrays.  Write procedures to insert and delete an element in to array.

Write a procedure (make-stack) that produces independent stack objects, using a message-passing style, e.g. (define stack1 (make-stack))  (define stack2 (make-stack)) W