find shortest path from a to z using dijkstra''s algorithm., Data Structure & Algorithms

Q. In the given figure find the shortest path from A to Z using Dijkstra's Algorithm. 

2234_Dijkstra algorithm.png

 

Ans:

1.  P=φ;  T={A,B,C,D,E,F,G,H,I,J,K,L,M,Z}

Let L(A)=0 and L(x)=∞ for all x in T ( L(x) denotes label of x)

2.  P={A}, T={B,C,D,E,F,G,H,I,J,K,L,M,Z} A≠Z so calculate the new labels for vertices in T

 

L(B)=min(∞, 0+2)=2

L(H)=min(∞, 0+2)=2

L(C)=min(∞, 0+∞)=∞

L(I)=∞

L(D)=∞

L(J)=∞

L(E)=min(∞, 0+2)=2

L(K)=min(∞, 0+2)=2

L(F)=∞

L(L)=∞

L(G)=∞

L(M)= ∞ ; L(Z)= ∞

 

3.  v=B, is the vertex with the smallest label, L(v)=2

P={A,B}, T={C,D,E,F,G,H,I,J,K,L,M,Z} B≠Z so calculate the new labels for vertices in T

 

L(C)=min(∞, 2+4)=6

L(I)=min(∞, 2+2)=4

L(D)=∞

L(J)=∞

L(E)=min(2,2+∞)=2

L(K)=min(2,2+∞)=2

L(F)=∞

L(L)=∞

L(G)=∞

L(M)=∞

L(H)=min(2,2+1)=2

L(Z)= ∞

 

4.  v=E, vertex containing the smallest label, L(v)=2

 

 

P={A,B,E}, T={C,D,F,G,H,I,J,K,L,M,Z} B≠Z so calculate  the new labels for vertices in T

L(C)=min(6, 2+∞)=6

L(J)= ∞

L(D)=∞

L(K)=min(2,2+2)=2

L(F)=min(∞,2+3)=5

 

L(G)=∞

L(L)=∞

L(H)=∞

L(M)=∞

L(I)= ∞

L(Z)= ∞

 

 

5.  v=K, vertex containing the smallest label, L(v)=2

P={A,B,E,K}, T={C,D,F,G,H,I,J,L,M,Z} K≠Z so calculate the new labels for vertices in T

L(C)=min(6, 2+∞)=6

L(J)= ∞

L(D)=∞

L(L)=min(∞,2+4)=6

L(F)=min(5,2+2)=4

L(M)=∞

L(G)=∞

L(Z)= ∞

L(H)=min(∞,2+2)=4

 

L(I)= min(∞,2+3)=5

 

 

6.  v=F, vertex containing the smallest label, L(v)=4

P={A,B,E,K,F}, T={C,D,G,H,I,J,L,M,Z} K≠Z so calculate the new labels for vertices in T

L(C)=min(6, 4+∞)=6

L(I)= min(5,4+∞)=5

L(D)=∞

L(L)=min(6,4+1)=5

L(G)=min(∞,4+4)=8

L(M)=min(∞,4+3)=7

L(G)=∞

L(Z)= ∞

L(H)=min(4,4+∞)=4

L(J)= ∞

 

7.  v=H, vertex containing the smallest label, L(v)=4

P={A,B,E,K,F,H}, T={C,D,G,I,J,L,M,Z}

 

K≠Z so calculate the new labels for vertices in T

L(C)=min(6, 4+∞)=6

L(J)= min(∞,4+∞)=∞

L(D)=∞

L(L)=min(5,4+∞)=5

L(G)=min(8,4+∞)=8

L(M)=min(7,4+∞)=7

L(I)=min(5,4+4)=5

L(Z)= ∞

 

8.  v=I, vertex containing the smallest label, L(v)=5

P={A,B,E,K,F,H,I}, T={C,D,G,J,L,M,Z} I≠Z so calculate the new labels for vertices in T

L(C)=min(6, 5+2)=6

L(L)= min(5,5+1)=5

L(D)=∞

L(M)=min(7,5+∞)=7

L(G)=min(8,5+∞)=8

L(Z)=∞

L(J)=min(∞,5+5)=10

 

 

9.  v=L, vertex containing the smallest label, L(v)=5

P={A,B,E,K,F,H,I,L}, T={C,D,G,J,M,Z}

L≠Z so calculate the new labels for vertices in T

L(C)=min(6, 5+∞)=6

L(J)= min(10,5+2)=7

L(D)=∞

L(M)=min(7,5+3)=7

L(G)=min(8,5+∞)=8

L(Z)=∞

 

10. v=C, vertex containing the smallest label, L(v)=6

P={A,B,E,K,F,H,I,L,C}, T={D,G,J,M,Z} C≠Z so calculate the new labels for vertices in T

L(D)=min(∞,6+3)=9

L(M)= min(7,6+∞)=7

L(G)=min(8,6+∞)=8

L(Z)=∞

L(J)=min(7,6+4)=7

 

 

11. v=J, vertex containing the  smallest label, L(v)=7

P={A,B,E,K,F,H,I,L,C,J}, T={D,G,M,Z} J≠Z so calculate the new labels for vertices in T

L(D)=min(9,7+2)=9

L(M)= min(7,7+2)=7

L(G)=min(8,7+∞)=8

L(Z)=min(∞,7+1)=8

 

12. v=M, vertex containing the smallest label, L(v)=7

P={A,B,E,K,F,H,I,L,C,J,M}, T={D,G,Z} M≠Z so calculate the new labels for vertices in T

L(D)=min(9,7+∞)=9

L(Z)= min(8,7+3)=8

L(G)=min(8,7+1)=8

 

13. v=G, vertex containing the smallest label, L(v)=8

P={A,B,E,K,F,H,I,L,C,J,M,G}, T={D,Z}

G≠Z so calculate the new labels for vertices in T L(D)=min(9,8+∞)=9                                                                          L(Z)= min(8,8+1)=8

 

14. v=z, so now  we stop here,  the Shortest distance is 8

Backtracking all the steps we get, shortest path as: A-K-F-L-J-Z

Posted Date: 7/10/2012 6:53:36 AM | Location : United States







Related Discussions:- find shortest path from a to z using dijkstra''s algorithm., Assignment Help, Ask Question on find shortest path from a to z using dijkstra''s algorithm., Get Answer, Expert's Help, find shortest path from a to z using dijkstra''s algorithm. Discussions

Write discussion on find shortest path from a to z using dijkstra''s algorithm.
Your posts are moderated
Related Questions
Binary search tree. A binary search tree is a binary tree that is either empty or in which every node having a key that satisfies the following conditions: - All keys (if an

What is an algorithm?  What are the characteristics of a good algorithm? An algorithm is "a step-by-step process for accomplishing some task'' An algorithm can be given in many

Data Structure and Methods: Build an array structure to accomodate at least 10 elements. Provide routines for the following: An initializer. A routine to populate (

write an algorithm for multiplication of two sparse matrices using Linked Lists

Abstract Data Types :- A useful tool for specifying the logical properties of a data type is the abstract data type or ADT. The term "abstract data type" refers to the basic mathem

Explain Backtracking The  principal idea is to construct solutions single component  at a time  and evaluate such  partially constructed candidates as follows. If a partiall

extra key inserted at end of array is called

Triangular Matrices Tiangular Matrices is of 2 types: a)  Lower triangular b)  Upper triangular

Which data structure is required to change infix notation to postfix notation?    Stack function is used to change infix notation to postfix notatio n

A tree is a non-empty set one component of which is designated the root of the tree while the remaining components are partitioned into non-empty groups each of which is a subtree