Q:  Find out the value of voltage Vo by using Norton's theorem .

Sol:
We have to calculate V0  by using Norton's theorem.
Step 1:  Replacing RL with a short circuit to search IN. Here RL is equal to 4k resistor.

Step 2:

                                                            Isc =I1 + I2
                        Apply KVL for node 1
                                                V1/4k + (V1 - 2)/3k + V1/6k +4m=0
                                                            3V1 +4V1 - 8 +2V1 +48 =0
                                                                         9V1+40=0
                                                                        V1= 4.44Volts
                        Now for node 2
                                                                        V2/2k + V2/8k -4 =0
                                                                   4V2 +V2 - 32 =0
                                                                          5kV2 = 32
                                                                              V2 =32/5 =6.4V
                        Now from the circuit we can say
                                                                         I1 = V2/8k
                                                                                         = 6.4/8k
                                                                        I1 = 0.8 mA
                                                                        I2 = V1/4k
                                                                            = 4.44/4k    =1.11mA
                        Therefore,
                                                             IN = I1+ I2
                                                             IN = (1.11 + 0.8) = 1.91mA
Step 3: Determining RN
To compute RN we short circuit all of voltage sources and open the current sources.

For RN
                                                  3k|| 6k = 2k
                                           2k is in series through 4k = 2k + 4k= 6k
                                           8k is in series with 2k = 8k + 2k=10k
                                                10k ||6k = 10 x6/16
                                                              =60/16 =3.75k
Step 4:
After determining IN & RN, re-inserting the load resistance RL in the circuit in parallel RN and letting the IN current source parallel along these two resistances.

                        To find out V0
                                                 I0 = 1.91m x 3.75k x 1/(4k+3.75k) = 0.92mA
                                                  V0 = 4k x 0.92m=3.68 Volts