Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
The following formula is used to calculate n: n = x * x/(1 - x) . Value x = 0 is used to stop algorithm. Calculation is repeated using values of x until value x = 0 is input. There is also a need to check for error conditions. Values of n and x must be output. Write an algorithm to display this repeated calculation using pseudocode.
NOTE: It's much easier in this illustration to input x first and then loop round doing calculation until eventually x = 0. Due to this, it would be essential to input x twice (which implies inside the loop and outside the loop). If input x occurred only once it would result in a more complicated algorithm. (Also note in algorithm that <> is used to represent ≠).
A while loop is used here, however a repeatloop would work just as well.
input x
while x <> 0 do
if x = 1 then print "error"
else n = (x * x)/(1 - x)
print n, x
endif
endwhile
Insertion: Records has to be inserted at the place dictated by the sequence of keys. As is obvious, direct insertions into the main data file would lead to frequent rebuilding of
Ask question #Minimum 10000 words accepted#
Q. Draw a B-tree of order 3 for the sequence of keys written below: 2, 4, 9, 8, 7, 6, 3, 1, 5, 10
The size of stack was declared as ten. Thus, stack cannot hold more than ten elements. The major operations which can be performed onto a stack are push and pop. However, in a prog
Using the cohen sutherland. Algorithm. Find the visible portion of the line P(40,80) Q(120,30) inside the window is defined as ABCD A(20,20),B(60,20),C(60,40)and D(20,40)
omega notation definition?
A driver takes shortest possible route to attain destination. The problem which we will discuss here is similar to this type of finding shortest route in any specific graph. The gr
Write the non-recursive algorithm to traverse a tree in preorder. The Non- Recursive algorithm for preorder traversal is as follows: Initially push NULL onto stack and
traverse the graph as BFS
compare two functions n and 2n for various values of n. determine when second becomes larger than first
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd