Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
As x tends to zero the value of 1/x tends to either ∞ or -∞. In this situation we will not be sure about the exact value of 1/x. As a result we will not be sure about the exact/approaching value of sin(1/x). We cant say anything about the value of sine function unless we know the angle and in this question we are not sure about the angle as at infinity it can take any value. We will be sure that the value of sin(1/x) will lie in [-1, 1] but not sure about a unique value. As in limits, it exists only when we get a unique value. Therefore we will say that the limit does not exist.
From the top of a 200 m lighthouse, the angle of depression to a ship in the ocean is 23 . How far is the ship form the base of the lighthouse?
what is the difference between North America''s part of the total population and Africa''s part
I have an algebra assignment I need help with, you have helped me before.. I need the work shown.
Jess had a book with 100 pages to read she only read 10 how many pages does she have to read?
solving sums
1.If a+b=2b and ab+cd+ad=3bc,prove that a,b,c,d are in A.P 2.The nth term of an A.P is an+b.Find the sum of the series upto n terms.
my qustion is how do you muliply frations
compare: 643,251: 633,512: 633,893. The answer is 633,512.
Classifying critical points : Let's classify critical points as relative maximums, relative minimums or neither minimums or maximums. Fermat's Theorem told us that all relative
x/15=50/20
Limit sin(1/x) when x tends to 0 is not definedCan be proved simply by multiplying and dividing by x then xsin(1/x)/x becomes 1/x as xsin(1/x)or for that matter sin(1/x)/1/x = 1 and limit reduces to 1/x which doesnt exist Also the proof can be that when x approcashes 0 from positive side 1/x tends to positive infinty and limit (right0 becomes sin(infinity) but when from left side 1/x tends to negative infinty so limit becomes -sin(infinit) which both can never b equal. so limit doesnt exist
Limit sin(1/x) when x tends to 0 is not definedCan be proved simply by multiplying and dividing by x then xsin(1/x)/x becomes 1/x as xsin(1/x)or for that matter sin(1/x)/1/x = 1 and limit reduces to 1/x which doesnt exist Also the proof can be that when x approcashes 0 from positive side 1/x tends to positive infinty and limit (right0 becomes sin(infinity) but when from left side 1/x tends to negative infinty so limit becomes -sin(infinit) which both can never b equal.
so limit doesnt exist
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd