Velocity and acceleration - three dimensional space, Mathematics

Assignment Help:

Velocity and Acceleration - Three Dimensional Space

In this part we need to take a look at the velocity and acceleration of a moving object.   

From Calculus I we are familiar with that given the position function of an object that the velocity of the object is the 1st derivative of the position function and the acceleration of the object is the 2nd derivative of the position function. 

Thus, given this it shouldn't be too surprising that whether the position function of an object is specified by the vector function  r→(t) then the velocity and acceleration of the object is illustrated by,

v (t) = r'(t)

a (t) = r'' (t)

Note: The velocity and acceleration are as well going to be vectors also.

In the study of the motion of objects the acceleration is frequently broken up into a tangential component, aT, and the normal component denoted as aN.  The tangential component is the part or element of the acceleration which is tangential to the curve and the normal component is the part of the acceleration which is normal or orthogonal to the curve.  If we do this we can write down the acceleration as,

a = aT T+ aNN

where T and N stands for the unit tangent and unit normal for the position function.

If we illustrate v = ||v (t)|| then the tangential and normal components of the acceleration are specified by,  

aT = v' =r' (t).r''(t) /(||r' (t)||)

aN = kv2 = ||?r' (t) *r" (t)|| / ||r' (t)||

in which k is the curvature for the position function.

There are two (2) formulas to employ here for each component of the acceleration and when the second formula may seem excessively complicated it is frequently the easier of the two.  In the tangential component, v, might be messy and calculating the derivative may be unpleasant.  In the normal component we will previously be computing both of these quantities in order to get the curvature and thus the second formula in this case is certainly the easier of the two.


Related Discussions:- Velocity and acceleration - three dimensional space

Mathematics- in our lives , MATHEMATICS - IN OUR LIVES : What is the mo...

MATHEMATICS - IN OUR LIVES : What is the most obvious example of mathematics in your life? To many of us it is the maths that we studied in school. But is that all the mathemat

Normal distribution, Normal Distribution Figure 1 The norm...

Normal Distribution Figure 1 The normal distribution reflects the various values taken by many real life variables like the heights and weights of people or the ma

Stakeholders, what is the benefit for stakeholders or disadvantage in a mon...

what is the benefit for stakeholders or disadvantage in a monoply

SHARES AND DIVIDEND, PLEASE PROVIDE SOME STUFF TO WRITE ON SHARES AND DIVID...

PLEASE PROVIDE SOME STUFF TO WRITE ON SHARES AND DIVIDEND

Kara brought $23 with her when she went shopping, Kara brought $23 with her...

Kara brought $23 with her when she went shopping. She spent $3.27 for lunch and $14.98 on a shirt. How much money does she have left? The two items that Kara bought must be sub

Sequencing, jobs a b c d e f 1 15 8 6 14 6 26 ...

jobs a b c d e f 1 15 8 6 14 6 26 2 17 7 9 10 15 22 3 21 7 12 9 11 19 4 18 6 11 12 14 17

Precalculus help, tsunami equation A sin (b * t) + k what is b supposed t...

tsunami equation A sin (b * t) + k what is b supposed to be if t is time a is amplitude and k is average water level (not exact value of b just what is it)

What is terminology of quadratic functions, What is Terminology of Quadrati...

What is Terminology of Quadratic Functions ? The function in x given by: F(x) = ax 2 + bx + c, where a 0 is called a quadratic function. The graph of a quadratic function is

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd