The f-wald test, Advanced Statistics

Assignment Help:

Primary Model

Below is a regression analysis without 17 outliers that have been removed

Regression Analysis: wfood versus totexp, income, age, nk

The regression equation is

wfood = 0.378 - 0.00129 totexp - 0.000054 income + 0.00170 age + 0.0317 nk

Predictor              Coef       SE Coef           T          P         VIF

Constant         0.37816     0.01356         27.89  0.000

totexp         -0.00128554  0.00006284  -20.46  0.000    1.324

income        -0.00005410  0.00004950   -1.09   0.275    1.341

age              0.0016993    0.0003058      5.56   0.000    1.065

nk                0.031717      0.004676        6.78   0.000    1.007

S = 0.0880161   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS         F           P

Regression         4      4.5159    1.1290  145.73  0.000

Residual Error   1497  11.5970   0.0077

  Lack of Fit       1328   10.1731  0.0077    0.91  0.806

  Pure Error        169    1.4239    0.0084

Total                  1501  16.1129

 

Secondary Model

Below is a regression analysis without 17 outliers that have been removed and dropping the income variable   

Regression Analysis: wfood versus totexp, age, nk

The regression equation is

wfood = 0.376 - 0.00132 totexp + 0.00165 age + 0.0317 nk

Predictor         Coef     SE Coef       T      P    VIF

Constant       0.37593     0.01341   28.04  0.000

totexp     -0.00131710  0.00005581  -23.60  0.000  1.045

age          0.0016462   0.0003019    5.45  0.000  1.038

nk            0.031672    0.004676    6.77  0.000  1.007

S = 0.0880218   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS          F           P

Regression         3       4.5067   1.5022   193.89  0.000

Residual Error   1498  11.6063  0.0077

  Lack of Fit       644    4.9570    0.0077    0.99     0.560

  Pure Error      854     6.6493    0.0078

Total               1501    16.1129

The Null Hypothesis - H0: No difference between the primary and secondary model

1465_The F-Wald Test.png

Since the F value is 1.2005 < 3.8477 there is sufficient evidence to suggest that we accept H0 implying that there is no difference between the primary and secondary model and income can be removed.


Related Discussions:- The f-wald test

Cure models, Models for the analysis of the survival times, or the time to ...

Models for the analysis of the survival times, or the time to event, data in which it is expected that a fraction of the subjects will not experience the event of interest. In a cl

Curvature measures, The diagnostic tools or devices used to approach the cl...

The diagnostic tools or devices used to approach the closeness to the linearity of the non-linear model. They calculate the deviation of so-called expectation surface from the plan

Sequencing problem, when there is tie in sequencing then what we do

when there is tie in sequencing then what we do

EDUC 606, The GRE has a combined verbal and quantitative mean of 1000 and a...

The GRE has a combined verbal and quantitative mean of 1000 and a standard deviation of 200.

Analysis of variance, Thomas Economic Forecasting, Inc. and Harmon Economet...

Thomas Economic Forecasting, Inc. and Harmon Econometrics have the same mean error in forecasting the stock market over the last ten years. However, the standard deviation for Thom

Mba, Mention the characteristics of Statistics. Explain any two application...

Mention the characteristics of Statistics. Explain any two applications of Statistics.

Oracle property, Oracle property is a name given to techniques for estimat...

Oracle property is a name given to techniques for estimating the regression parameters in the models fitted to high-dimensional data which have the property that they can correctl

Non central distributions, Non central distributions is the series of prob...

Non central distributions is the series of probability distributions each of which is the adaptation of one of the standard sampling distributions like the chi-squared distributio

Resentful demoralization, Resentful demoralization is the possible phenome...

Resentful demoralization is the possible phenomenon in the clinical trials and intervention studies in which comparison groups not attaining a perceived desirable treatment become

Orthogonal, Orthogonal is a term which occurs in several regions of the st...

Orthogonal is a term which occurs in several regions of the statistics with different meanings in each case. Most commonly the encountered in the relation to two variables or t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd