Taylor series - sequences and series, Mathematics

Assignment Help:

Taylor Series - Sequences and Series

In the preceding section we started looking at writing down a power series presentation of a function.  The difficulty with the approach in that part is that everything came down to requiring to be able to relate the function in some way to 

1/(1-x)

and when there are many functions out there that can be related to this function there are so many that simply can't be related to this.

Thus, without taking anything away from the procedures we looked at in the preceding section, what we require to do is come up with a much more general method for writing a power series presentation for a function.

 Thus, for the time being, let us make two assumptions.  First, let's suppose that the function f (x) does in fact have a power series presentation about  x = a,

1085_Taylor Series - Sequences and Series 1.png

Next, we will need to assume that the function, f (x), has derivatives of every order and that we can in fact find them all.

 Now here that we've assumed that a power series representation available we need to determine what the coefficients, cn are.  This is easier as compared to it might at first appear to be.  Let us first just evaluate everything at x = a.  This specifies,

f (a) = C0

Thus, all the terms apart from the first are zero and we now know what c0 is.  Not fortunately, there is not any other value of x that we can plug into the function that will permit us to rapidly find any of the other coefficients.  Though, if we take the derivative of the function (and its power series) after that plug in x = a we obtain,

f' (x) = c1 + 2c2 (x-a) + 3c3 (x-a)2 + 4c4 (x-a)3 + .....

f'(a) = c1

and we now recognize c1.

Let us carry on with this plan and find out the second derivative.

f'' (x) = 2c2 + 3(2) c3 (x-a) + 4 (3) c4 (x-a)2 + ....

f'' (a) = 2c2

Thus, it looks like,

C2 = f'' (a) / 2

By using the third derivative gives,

2062_Taylor Series - Sequences and Series 2.png

By using the fourth derivative gives,

1170_Taylor Series - Sequences and Series 3.png

With anticipation by this time you have seen the pattern here. Generally it looks like, we've got the subsequent formula for the coefficients.

Cn = f(n)(a) / n!


Related Discussions:- Taylor series - sequences and series

Differentiation formulas, Differentiation Formulas : We will begin this s...

Differentiation Formulas : We will begin this section with some basic properties and formulas.  We will give the properties & formulas in this section in both "prime" notation &

F distribution or variance ratio distribution, Frequency Distribution or Va...

Frequency Distribution or Variance Ratio Distribution This was developed by R. A Fisher in 1924 and is normally defined in terms of the ratio of the variances of two usually d

Calculus, using 5 rectangles what is the area under a curve using the funct...

using 5 rectangles what is the area under a curve using the function f(x)=3x+4 and boundries [0,2]

Trigonometric ratios, to difine trigonometric ratios of an angle,is it nece...

to difine trigonometric ratios of an angle,is it necessary that the initial ray of the angle must be positive x-axis?

Book 6b, one bathroom is 0.3m long how long is a row of 8 tiles

one bathroom is 0.3m long how long is a row of 8 tiles

Estimate the value of x and y in liner equation, ( a+2b)x + (2a - b)y = 2...

( a+2b)x + (2a - b)y = 2, (a - 2b)x + (2a +b)y = 3 (Ans: 5b - 2a/10ab , a + 10b/10ab ) Ans: 2ax + 4ay = y , we get 4bx - 2by = -1 2ax+ 4ay = 5  4bx- 2by = - 1

Math help, What fraction of the full price will you pay for 2 shirts? 3 4 ...

What fraction of the full price will you pay for 2 shirts? 3 4 11 2 $45.001 2 .

Can u please tell me how to solve, a triangle with side lengths in the rati...

a triangle with side lengths in the ratio 3:4:5 is inscribed in a circle of radius 3.what is the area of the triangle.

Draw a graph model with the adjacency matrix, QUESTION (a) Draw a graph...

QUESTION (a) Draw a graph model with the following adjacency matrix.                         (b) The diagram below shows different cities labelled a to g and z. Also sh

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd