Taylor series, Mathematics

Assignment Help:

If f(x) is an infinitely differentiable function so the Taylor Series of f(x) about x=x0 is,

761_Taylor Series.png

Recall that,

f(0)(x) = f(x)

f(n)(x) = nth derivative of f(x)


Related Discussions:- Taylor series

Equation of a straight line, In a two dimensional case, the form of t...

In a two dimensional case, the form of the linear function can be obtained if we know the co-ordinates of two points on the straight line. Suppose  x' and  x"  are two

Power of iota, The next topic that we desire to discuss here is powers of i...

The next topic that we desire to discuss here is powers of i. Let's just take a look at what occurring while we start looking at many powers of i . i 1 = i

Volumes of solids of revolution - method of rings, Volumes of Solids of Rev...

Volumes of Solids of Revolution / Method of Rings In this section we will begin looking at the volume of solid of revolution. We have to first describe just what a solid of rev

Calculus, sin(xy)+x=5y Find the derivative.

sin(xy)+x=5y Find the derivative.

Exponential functions, The exponential functions are useful for descr...

The exponential functions are useful for describing compound interest and growth. The exponential function is defined as:          y = m. a x where '

Simple derivatives, Simple derivatives Example   Differentiate followin...

Simple derivatives Example   Differentiate following.  (5x 3   - 7 x + 1) 5 ,[ f ( x )] 5 ,[ y ( x )] 5 Solution: Here , with the first function we're being asked to

Find the area of parallelogram, Find the area of PARALLELOGRAM ? A para...

Find the area of PARALLELOGRAM ? A parallelogram is a four-sided shape, of which the opposite sides are parallel. (Because they are parallel, opposite sides also have the same

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd