Systems of differential equations, Mathematics

Assignment Help:

In the introduction of this section we briefly talked how a system of differential equations can occur from a population problem wherein we remain track of the population of both the prey and the predator. This makes sense that the number of prey present will influence the number of the predator present. Similarly, the number of predator present will influence the number of prey present. Thus the differential equation which governs the population of either the prey or the predator must in some way based on the population of the other. It will lead to two differential equations which must be solved simultaneously so as to determine the population of the predator and the prey.

The entire point of this is to see that systems of differential equations can occur quite simple from naturally occurring situations. Developing an effectual predator-prey system of differential equations is not the subject of this section. Though, systems can occur from nth order linear differential equations suitably. Before we find this though, let's write down a system and find some terminology out of the way.

We are going to be searching at first order, linear systems of differential equations. These terms implies the same thing which they have meant up to this point. The main derivative anywhere in the system will be a first derivative and each unknown function and their derivatives will only arise to the first power and will not be multiplied with other unknown functions.  Now there is an example of a system of first order, linear differential equations.

x1' = x1 + 2x2

x2' = 3x1 + 2x2

We call this type of system a coupled system as knowledge of x2 is needed in order to get x1 and similarly knowledge of x1 is needed to get x2. We will worry regarding that how to go about solving these presently. At this point we are only involved in becoming familiar along with some of the fundamentals of systems.

Here, as mentioned earlier, we can write an nth order linear differential equation like a system. Let's notice how that can be done.


Related Discussions:- Systems of differential equations

Substitutions at bernoulli equations, In the prior section we looked at Ber...

In the prior section we looked at Bernoulli Equations and noticed that in order to solve them we required to use the substitution v = y 1-n . By using this substitution we were cap

Accumulated amount , $26,000 is spended for two years. In the first year it...

$26,000 is spended for two years. In the first year it gets interest at 8.3% p.a. compounded semi annually. In the same year the rate of interest changes to 7.5% p.a. compounded da

Compute the probability, From past experience a machine is termed to be set...

From past experience a machine is termed to be set up correctly on 90 percent of occasions.  If the machine is set up correctly then 95 percent of good parts are expected however i

..compound intrest, tell me about the software of compound intrest?

tell me about the software of compound intrest?

Determine the inverse function f ( x ), Given f ( x ) = 3x - 2 determine ...

Given f ( x ) = 3x - 2 determine     f -1 ( x ) . Solution Now, already we know what the inverse to this function is as already we've done some work with it.  Though, it

Geometry, RS=8y+4 ST=4y+8 RT=15y-9 a.) WHAT IS THE VALUE OF y b.) FIND RS...

RS=8y+4 ST=4y+8 RT=15y-9 a.) WHAT IS THE VALUE OF y b.) FIND RS, ST, AND RT

Trigonometry, TRIGONOMETRY : "The  mathematician  is  fascinated  with  the...

TRIGONOMETRY : "The  mathematician  is  fascinated  with  the  marvelous  beauty  of the forms  he  constructs,  and  in their  beauty  he  finds  everlasting  truth." Example:

Develop a linear program to investment advisory firm, An investment advisor...

An investment advisory firm manages funds for its numerous clients. The company uses an asset allocation model that recommends the portion of each client's portfolio to be invested

Prove that the poset has a unique least element, Prove that the Poset has a...

Prove that the Poset has a unique least element Prove that if (A, ) has a least element, then (A,≤)  has a unique least element. Ans: Let (A, ≤) be a poset. Suppose the po

Standard conventions in game theory, Standard conventions in game theory ...

Standard conventions in game theory Consider the given table: Y   3 -4 X -2 1

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd