Systems of differential equations, Mathematics

Assignment Help:

In the introduction of this section we briefly talked how a system of differential equations can occur from a population problem wherein we remain track of the population of both the prey and the predator. This makes sense that the number of prey present will influence the number of the predator present. Similarly, the number of predator present will influence the number of prey present. Thus the differential equation which governs the population of either the prey or the predator must in some way based on the population of the other. It will lead to two differential equations which must be solved simultaneously so as to determine the population of the predator and the prey.

The entire point of this is to see that systems of differential equations can occur quite simple from naturally occurring situations. Developing an effectual predator-prey system of differential equations is not the subject of this section. Though, systems can occur from nth order linear differential equations suitably. Before we find this though, let's write down a system and find some terminology out of the way.

We are going to be searching at first order, linear systems of differential equations. These terms implies the same thing which they have meant up to this point. The main derivative anywhere in the system will be a first derivative and each unknown function and their derivatives will only arise to the first power and will not be multiplied with other unknown functions.  Now there is an example of a system of first order, linear differential equations.

x1' = x1 + 2x2

x2' = 3x1 + 2x2

We call this type of system a coupled system as knowledge of x2 is needed in order to get x1 and similarly knowledge of x1 is needed to get x2. We will worry regarding that how to go about solving these presently. At this point we are only involved in becoming familiar along with some of the fundamentals of systems.

Here, as mentioned earlier, we can write an nth order linear differential equation like a system. Let's notice how that can be done.


Related Discussions:- Systems of differential equations

Find the time required for an enlargement, 1. The polynomial G(x) = -0.006x...

1. The polynomial G(x) = -0.006x4 + 0.140x3 - 0.53x2 + 1.79x measures the concentration of a dye in the bloodstream x seconds after it is injected. Does the concentration increase

Intercepts, The last topic that we want to discuss in this section is that ...

The last topic that we want to discuss in this section is that of intercepts.  Notice that the graph in the above instance crosses the x-axis in two places & the y-axis in one plac

Multiply the polynomials, Multiply following. (a) (4x 2 -x)(6-3x) (b)...

Multiply following. (a) (4x 2 -x)(6-3x) (b) (2x+6) 2 Solution  (a) (4x 2 - x )(6 - 3x ) Again we will only FOIL this one out. (4x 2  - x )(6 - 3x) = 24x 2 -

Finding the area of a triangle, Q. Finding the Area of a Triangle? Ther...

Q. Finding the Area of a Triangle? There are three commonly used methods to find the area of a triangle. The method you use to find the area depends on the information you kno

Continuous compounding, If r per annum is the rate at which the princ...

If r per annum is the rate at which the principal A is compounded annually, then at the end of k years, the money due is          Q = A (1 + r) k Suppose

Positive skewness-measure of central tendency, Positive Skewness - It ...

Positive Skewness - It is the tendency of a described frequency curve leaning towards the left. In a positively skewed distribution, the long tail extended to the right. In

Unconditional and conditional probability, Two events A and B are ind...

Two events A and B are independent events if the occurrence of event A is in no way related to the occurrence or non-occurrence of event B. Likewise for independent

Definition of vertical asymptote, Vertical asymptote Definition : The funct...

Vertical asymptote Definition : The function f(x) will contain a vertical asymptote at x = a if we contain any of the following limits at x = a .   x→a- Note as well that it

Example of multiplying decimals, Example of Multiplying Decimals: Exa...

Example of Multiplying Decimals: Example:  0.45 x 10 = 4.5.  Same, while multiplying a decimal through 100, 1000, and 10,000, move the decimal point to the right the similar

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd