Surface area with parametric equations, Mathematics

Assignment Help:

Surface Area with Parametric Equations

In this final section of looking at calculus applications with parametric equations we will take a look at determining the surface area of a region obtained by rotating a parametric curve about the x or y-axis.

We will rotate the parametric curve given by,

x = f (t)

y = g (t)

α ≤ t ≤ β

about the x or y-axis. We are going to suppose that the curve is traced out exactly one time as t increases from α to β. In fact at this point there isn't all that much to do. We know earlier that the surface area can be found by utilizing one of the following two formulas depending upon the axis of rotation.

S = ∫ 2Πy ds                                                    rotation about x- axis

S =∫ 2Πx ds                                                     rotation about y-axis

All that we required is a formula for ds to use and from the preceding section we have,

ds = √ [(dx/dt)2 + (dy/dt)2] dt

if x = f (t),

y = g(t), 

α ≤ t ≤ β

which is exactly what we need. 

We will require to be careful with the x or y that is in the original surface area formula.  Back while we first looked at surface area we saw that occasionally we had to substitute for the variable in the integral and at another times we didn't.  This was dependent on the ds which we used.  However in this case, we will all time have to substitute for the variable.  The ds that we use for parametric equations bring in a dt into the integral and meaning of this is that everything needs to be in terms of t. Hence, we will require to substitute the appropriate parametric equation for x or y depending upon the axis of rotation.


Related Discussions:- Surface area with parametric equations

Determine the number of full withdrawals, A worker retires with a lump sum ...

A worker retires with a lump sum superannuation benefit of $500,000. She immediately invests this money in a fund earning 5% pa effective. One year after retirement she begins maki

Arithmetic sequence, find a30 given that the first few terms of an arithmet...

find a30 given that the first few terms of an arithmetic sequence are given by 6,12,18...

Calculate the value of expected value, The owner of TMH Hospital wants to o...

The owner of TMH Hospital wants to open a new facility in a certain area. He usually builds 25-, 50-, or 100-bed facilities, depending on whether anticipated demand is low, medium

Solve simultaneous equations by graphical method, Solve the following pairs...

Solve the following pairs of simultaneous equations by elimination method i.2x+y=10 ii. 3x+y=6 3x-2y=1 5x+y=8 solve the following simult

Divison, what is 24 diveded by 3

what is 24 diveded by 3

Covariance, Covariance The variance is a measure of the variabil...

Covariance The variance is a measure of the variability or dispersion in a variable or data set. A measure of the variability of one variable (or data set) in relatio

Why x and y are simplifying expressions, Why x and y are Simplifying Expres...

Why x and y are Simplifying Expressions? You're doing algebra now, and you know you're going to see x's and y's. But before we work with x's and y's, we'll explore why we use t

Derivatives for logarithm, Logarithm Functions : Now let's briefly get the...

Logarithm Functions : Now let's briefly get the derivatives for logarithms.  In this case we will have to start with the following fact regarding functions that are inverses of ea

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd