Surface area with parametric equations, Mathematics

Assignment Help:

Surface Area with Parametric Equations

In this final section of looking at calculus applications with parametric equations we will take a look at determining the surface area of a region obtained by rotating a parametric curve about the x or y-axis.

We will rotate the parametric curve given by,

x = f (t)

y = g (t)

α ≤ t ≤ β

about the x or y-axis. We are going to suppose that the curve is traced out exactly one time as t increases from α to β. In fact at this point there isn't all that much to do. We know earlier that the surface area can be found by utilizing one of the following two formulas depending upon the axis of rotation.

S = ∫ 2Πy ds                                                    rotation about x- axis

S =∫ 2Πx ds                                                     rotation about y-axis

All that we required is a formula for ds to use and from the preceding section we have,

ds = √ [(dx/dt)2 + (dy/dt)2] dt

if x = f (t),

y = g(t), 

α ≤ t ≤ β

which is exactly what we need. 

We will require to be careful with the x or y that is in the original surface area formula.  Back while we first looked at surface area we saw that occasionally we had to substitute for the variable in the integral and at another times we didn't.  This was dependent on the ds which we used.  However in this case, we will all time have to substitute for the variable.  The ds that we use for parametric equations bring in a dt into the integral and meaning of this is that everything needs to be in terms of t. Hence, we will require to substitute the appropriate parametric equation for x or y depending upon the axis of rotation.


Related Discussions:- Surface area with parametric equations

Explain combining negative signs in integers, Explain Combining Negative Si...

Explain Combining Negative Signs in integers? You've learned about positive and negative integers. BASICS :   When you place a negative sign in front of an integer, you get

Describe the laws of sines, Q. Describe the Laws of Sines? Ans. Up...

Q. Describe the Laws of Sines? Ans. Up to now we have dealt exclusively with right triangles.  The Law of Sines and the Law of Cosines are used to solve  oblique triangles

Area of a circle, There's a nice way to show why the expresion for the area...

There's a nice way to show why the expresion for the area of a circle of radius R is: Pi * R 2 . It has an comman relationship with the experation for the circumference of a

Integration and differentiation, Integration and Differentiation Diffe...

Integration and Differentiation Differentiation deals along with the determination of the rates of change of business activities or merely the process of finding the derivativ

What decimal is represented by point a on the number line, What decimal is ...

What decimal is represented by point A on the number line? The hash marks indicate units of 0.01 between 0.75 and 0.80. Point A is 0.77. See the ?gure below.

Congruence, a) Let n = (abc) 7 . Prove that n ≡ a + b + c (mod 6). b) U...

a) Let n = (abc) 7 . Prove that n ≡ a + b + c (mod 6). b) Use congruences to show that 4|3 2n   - 1 for all integers n ≥ 0.

Determine the volume of the hollowed solid, A cylindrical hole with a radiu...

A cylindrical hole with a radius of 4 inches is cut through a cube. The edge of the cube is 5 inches. Determine the volume of the hollowed solid in terms of π. a. 125 - 80π

What is a mixed number, Q. What is a Mixed Number? Ans. A mixed nu...

Q. What is a Mixed Number? Ans. A mixed number is an integer, along with a fractional part, which has the same sign. (Therefore, a mixed number always has two parts.) M

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd