Surface area with parametric equations, Mathematics

Assignment Help:

Surface Area with Parametric Equations

In this final section of looking at calculus applications with parametric equations we will take a look at determining the surface area of a region obtained by rotating a parametric curve about the x or y-axis.

We will rotate the parametric curve given by,

x = f (t)

y = g (t)

α ≤ t ≤ β

about the x or y-axis. We are going to suppose that the curve is traced out exactly one time as t increases from α to β. In fact at this point there isn't all that much to do. We know earlier that the surface area can be found by utilizing one of the following two formulas depending upon the axis of rotation.

S = ∫ 2Πy ds                                                    rotation about x- axis

S =∫ 2Πx ds                                                     rotation about y-axis

All that we required is a formula for ds to use and from the preceding section we have,

ds = √ [(dx/dt)2 + (dy/dt)2] dt

if x = f (t),

y = g(t), 

α ≤ t ≤ β

which is exactly what we need. 

We will require to be careful with the x or y that is in the original surface area formula.  Back while we first looked at surface area we saw that occasionally we had to substitute for the variable in the integral and at another times we didn't.  This was dependent on the ds which we used.  However in this case, we will all time have to substitute for the variable.  The ds that we use for parametric equations bring in a dt into the integral and meaning of this is that everything needs to be in terms of t. Hence, we will require to substitute the appropriate parametric equation for x or y depending upon the axis of rotation.


Related Discussions:- Surface area with parametric equations

Quick help for exam preparation, can you help me with entrance exam for uni...

can you help me with entrance exam for university ? i really need help so quick

Differentiate outline function in chain rules, Differentiate following. ...

Differentiate following. Solution : It requires the product rule & each derivative in the product rule will need a chain rule application as well. T ′ ( x ) =1/1+(2x) 2

If a sequence is bounded and monotonic then it is convergent, Theorem ...

Theorem If {a n } is bounded and monotonic then { a n } is convergent.  Be cautious to not misuse this theorem.  It does not state that if a sequence is not bounded and/or

Two tailed tests, Two Tailed Tests A two tailed test is generally used ...

Two Tailed Tests A two tailed test is generally used in statistical work as tests of significance for illustration, if a complaint lodged by the client is about a product not m

Trapezoid rule - approximating definite integrals, Trapezoid Rule - Approxi...

Trapezoid Rule - Approximating Definite Integrals For this rule we will do similar set up as for the Midpoint Rule. We will break up the interval [a, b] into n subintervals of

Fractions, how do I solve 14/27 - 23/27 =

how do I solve 14/27 - 23/27 =

Example of inflection point - set theory and calculus, Need help, Determine...

Need help, Determine the points of inflection on the curve of the function y = x 3

Series, find the series of the first twenty terms

find the series of the first twenty terms

Arc length with parametric equations, Arc Length with Parametric Equations ...

Arc Length with Parametric Equations In the earlier sections we have looked at a couple of Calculus I topics in terms of parametric equations.  We now require to look at a para

General rule - probability rule, GENERAL RULE A general rule is to sub...

GENERAL RULE A general rule is to subtract the probabilities with an even number of components inside the parentheses and add those with an odd number of components (one or th

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd