Superconductivity introduction and superconductivity history, Physics

Assignment Help:

INTRODUCTION: Superconductivity is a phenomenon takes place in certain materials at low temperatures. Characterized by precisely zero electrical resistance. Superconductors have two exceptional features.

HISTORY: Superconductors, materials that have no resistance to the flow of electricity, are one of the last great frontiers of scientific discovery. The theories that explain superconductor behaviour seem to be constantly under review. In 1911 superconductivity was first observed in mercury by Dutch physicist Heike kamerlingh acnes of Leiden University. When he cooled it to the temperature of liquid helium, 4 degrees Kelvin (-4520F, -2690C), its resistance suddenly disappeared. The Kelvin scale shows an “absolute” scale of temperature. Thus, it was necessary for acnes to come within 4 degrees of the coldest temperature that is theoretically attainable to witness the phenomenon of superconductivity later, in 1913; he won a Nobel in physics for his research in this area. The next huge milestone in understanding how matters perform at extreme cold temperatures occurred in 1933. German researchers Walter Meissner and Robber Ochsenfeld discovered that a superconducting material will repel a magnetic field (below graphic). A magnet moving by a conductor induces currents in the conductor. This is the principal on which the electric generator works. But, in a superconductor the induced currents precisely mirror the field that would have otherwise pierced the superconducting material causing the magnet to be repulsed. This phenomenon known as strong diamagnetism and is today often referred to as the “Meissner effect” (an eponym). The Meissner effect is so powerful that a magnet can really be levitated over a superconductive material. In succeeding decades other superconducting metals, alloys and compounds were revealed. In 1941 niobium nitride was originate to superconducting at 16K. In 1953 vanadium silicon showed superconductive properties at 17.5k. And, in 1962 scientist at wasting house developed the first commercial superconductive wire, an alloy of niobium and titanium. High energy particle accelerator electromagnets made of copper clad niobium titanium were than developed in the 1960s at the Ruther food Appleton laboratory in the U.K. And were first employed in the superconducting accelerator at the Fermi lab Everton in the U.S in 1987. The first widely accepted theoretical understanding of superconductivity was advanced in 1957 by American physicists John Bardeen, Leon Copper, and John Schrieffer. Their theories of superconductivity became known as the BCS theory derived by the first letter of each man’s last name and won them a Nobel Prize in 1972. The mathematically complex BCS theory explained superconductivity at temperature loses to absolute zero for elements and simple alloys. Another significant theoretical advancement came in 1962 when Bream D. Josephson predicated that electrical current would flow between two electrical current would flow between two superconducting materials even when they are separated by a non superconductor or insulator. This tunnelling phenomenon is today known as the “Josephson effect” and has been applied to electronic devices such as the SQUID (AN instrument capable of detecting even the weakest magnetic fields). It has been started that the resistivity of most metals increases with increases in temperature and vice-versa. There are some metals and chemical compounds whose resistivity become zero when their temperature is brought at 00K (-2730C). At this stage such metals or compounds are said to have attained super conductivity. The two distinctly different types of behaviour are dissipated. Superconductivity occurred in a wide verity of materials, including simple elements like tin and aluminium, various metallic alloys, some heavily doped semiconductors, and certain ceramic compounds containing planes of copper and the unconventional super conductor. Superconductivity does not occur in noble metals like Gold and Silver, not is ferromagnetic metals.


Related Discussions:- Superconductivity introduction and superconductivity history

Expression for the intensity distribution , Q.   Derive an expression for t...

Q.   Derive an expression for the intensity distribution due to Fraunhofer's diffraction at a single slit and shows that the intensity of the first subsidiary maxima is about 4.5 p

Illustrate the electric field lines of a point charge q, The electric field...

The electric field E because of a point charge at any point near it is explained as where q is the test charge and F is the force acting on it. What is the physical significance of

Explain about the amplitude mode of data presentation, Explain about the am...

Explain about the amplitude mode of data presentation. The A-mode: The A-mode or the Amplitude mode of data presentation exhibits the amount of obtained ultrasonic energy li

Speed-time graph, A girl starts and finishes the ride at rest. Her horizont...

A girl starts and finishes the ride at rest. Her horizontal motion can be take as. •an initial uniform acceleration for 3.0s, followed by •a constant speed of 2.4m/s for a further

What is the mass flow rate of the cooling water, Air enters in a compressor...

Air enters in a compressor operating at steady state along with a volumetric flow rate of 37 m³/min at 136 kPa, 305 K and exits with a pressure of 680 pPa and a exact volume of 0.1

Determine the maximum power output, A mass flow of 10kg/s of water vapor ...

A mass flow of 10kg/s of water vapor at 30bar and 500 0 C flows steadily through the inlet an insulated turbine. The pressure of the water is reduced to 1bar at the turbi

What is temperature of inversion, Q What is temperature of inversion? ...

Q What is temperature of inversion? Maintain the temperature of the cold junction constant the temperature of the hot junction is gradually increased. The thermo emf increase

Kinematics, the maximum height attained by a projectile and its horizontal...

the maximum height attained by a projectile and its horizontal range are equal to each other if the projectile projected at an angle [theta] given by ?

Explain metallurgical industry, Metallurgical Industry:- Variable speed...

Metallurgical Industry:- Variable speed DC drives are being use usually now variable frequency AC drives using squirrel cage motors

Calculation of speed of light, how to calculate speed of light?  The sp...

how to calculate speed of light?  The speed of light in vacuum, normally denoted by symbol c, is a universal physical constant which is very important in various areas of physi

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd