Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
INTRODUCTION: Superconductivity is a phenomenon takes place in certain materials at low temperatures. Characterized by precisely zero electrical resistance. Superconductors have two exceptional features.
HISTORY: Superconductors, materials that have no resistance to the flow of electricity, are one of the last great frontiers of scientific discovery. The theories that explain superconductor behaviour seem to be constantly under review. In 1911 superconductivity was first observed in mercury by Dutch physicist Heike kamerlingh acnes of Leiden University. When he cooled it to the temperature of liquid helium, 4 degrees Kelvin (-4520F, -2690C), its resistance suddenly disappeared. The Kelvin scale shows an “absolute” scale of temperature. Thus, it was necessary for acnes to come within 4 degrees of the coldest temperature that is theoretically attainable to witness the phenomenon of superconductivity later, in 1913; he won a Nobel in physics for his research in this area. The next huge milestone in understanding how matters perform at extreme cold temperatures occurred in 1933. German researchers Walter Meissner and Robber Ochsenfeld discovered that a superconducting material will repel a magnetic field (below graphic). A magnet moving by a conductor induces currents in the conductor. This is the principal on which the electric generator works. But, in a superconductor the induced currents precisely mirror the field that would have otherwise pierced the superconducting material causing the magnet to be repulsed. This phenomenon known as strong diamagnetism and is today often referred to as the “Meissner effect” (an eponym). The Meissner effect is so powerful that a magnet can really be levitated over a superconductive material. In succeeding decades other superconducting metals, alloys and compounds were revealed. In 1941 niobium nitride was originate to superconducting at 16K. In 1953 vanadium silicon showed superconductive properties at 17.5k. And, in 1962 scientist at wasting house developed the first commercial superconductive wire, an alloy of niobium and titanium. High energy particle accelerator electromagnets made of copper clad niobium titanium were than developed in the 1960s at the Ruther food Appleton laboratory in the U.K. And were first employed in the superconducting accelerator at the Fermi lab Everton in the U.S in 1987. The first widely accepted theoretical understanding of superconductivity was advanced in 1957 by American physicists John Bardeen, Leon Copper, and John Schrieffer. Their theories of superconductivity became known as the BCS theory derived by the first letter of each man’s last name and won them a Nobel Prize in 1972. The mathematically complex BCS theory explained superconductivity at temperature loses to absolute zero for elements and simple alloys. Another significant theoretical advancement came in 1962 when Bream D. Josephson predicated that electrical current would flow between two electrical current would flow between two superconducting materials even when they are separated by a non superconductor or insulator. This tunnelling phenomenon is today known as the “Josephson effect” and has been applied to electronic devices such as the SQUID (AN instrument capable of detecting even the weakest magnetic fields). It has been started that the resistivity of most metals increases with increases in temperature and vice-versa. There are some metals and chemical compounds whose resistivity become zero when their temperature is brought at 00K (-2730C). At this stage such metals or compounds are said to have attained super conductivity. The two distinctly different types of behaviour are dissipated. Superconductivity occurred in a wide verity of materials, including simple elements like tin and aluminium, various metallic alloys, some heavily doped semiconductors, and certain ceramic compounds containing planes of copper and the unconventional super conductor. Superconductivity does not occur in noble metals like Gold and Silver, not is ferromagnetic metals.
Explain newtons cradle- A typical Newton's cradle consists of metal balls of identically sized in a series suspended in a metal frame ,so that they are just touching each other at
a pendulum is timed ,first for 20 swings and then for 50 swings ; time for 20 swings = 17.4 sec and time for 50 sec = 43.2. calculate the average time per swing/
Two identical particles every having a charge of 1.0 coulombs are separated by 2.0 meters. What is the electric potential because of the pair of charged particles at the point midw
Define one newton
Explain about the crystalline solids in short. Crystalline solids: A solid possesses rigidity with a definite geometric pattern. Illustrations: Iron, silver, copper an
A steel wire in a piano has a length of 0.6000 m and a mass of 3.600 10 -3 kg. To what tension must this wire be stretched in order that the fundamental vibration correspond to
A silicon material is subjected to a magnetic field of strength 1000A/m. If the magnetic susceptibility of silicon is -0.3x10-5, calculate its magnetization and magnetic flux densi
Type 1 and type 2 superconductors: For one group of SUPERCONDUCTOR in which below H c is in the Meissner state, where it excludes all the magnetic flux from the interior of the
How is polymer fibers terminated? PMMA fiber single ends can be of some types always depending upon the nature of the conductor and the last application. A Simply cut fiber wit
discuss the positive and negative of militancy
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd