Solve the subsequent differential equation, Mathematics

Assignment Help:

Solve the subsequent differential equation.

2xy - 9 x2 + (2y + x2 + 1) dy/dt = 0

Solution

Let's start off via supposing that wherever out there in the world is a function Ψ(x,y) which we can get. For this illustration the function that we require

Ψ(x,y) = y2 + (x2 + 1) y - 3x3

Do not worry at this point about where this function came from and how we found it.  Finding the function, ?(x,y), that is needed for any particular differential equation is where the vast majority of the work for these problems lies.  As stated earlier, however, the point of this example is to demonstrate you why the solution process works rather than demonstrating you the actual solution process.

We will notice how to find this function in the subsequent example, thus at this point do not worry regarding how to find it, eailsy accept that this can be got and that we've done as for this exact differential equation.

Here, take some partial derivatives of the function.

Ψx = 2xy - 9x2

Ψx = 2y + x2 + 1

Here, compare these partial derivatives to the differential equation and you'll observe that along with these we can here write the differential equation like:

Ψx + Ψx dy/dt = 0    ......................(1)

Currently, recall from your multi-variable calculus class that (1) is nothing more than the subsequent derivative which you'll require the multi-variable chain rule for this.

d/dx(Ψ(x,y(x)))

Thus, the differential equation can now be written like:

d/dx(Ψ(x,y(x))) = 0

There, if the ordinary but not partial derivative of something is zero, as something should have been a constant to start along with. Conversely, we've got to contain Ψ(x,y) = c.  Or,

y2 + (x2 + 1) y - 3x3 = c

This afterward is an implicit solution for our differential equation! If we had a first condition we could solve for c. We could also get an explicit solution if we needed.

Okay, therefore what did we learn from the last illustration? Let's consider things a little more commonly. Assume that we have the subsequent differential equation.

M(x,y) + N (x,y) dy/dx = 0   .......................(2)

Remember that it's significant that it be in this form! There should be an "= 0" on individual side and the sign separating the two terms should be a "+".  There, if there is a function somewhere out there in the world, Ψ (x,y), hence,

Ψx = M(x,y) and

Ψx = N (x,y)

After that we call the differential equation accurate. In such cases we can write the differential equation like:

Ψx + Ψx dy/dt = 0    ......................(3)

After that using the chain rule from Calculus III we can further decrease the differential equation to the subsequent derivative,

d/dx(Ψ(x,y(x))) = 0

The implicit solution to an accurate differential equation is after that:

Ψ(x,y) = c   ......................(4)

Well, it's the solution given we can get Ψ (x,y) anyway. Thus, once we have the function we can all the time just jump straight to (4) to find an implicit solution to our differential equation.

Finding the function Ψ (x,y) is obviously the central task in finding if a differential equation is accurate and in finding its solution. When we will notice, finding Ψ (x,y) can be a somewhat lengthy process wherein there is the chance of mistakes. Thus, it would be nice whether there was some easy test that we could use before even starting to notice if a differential equation is exact or not. It will be especially helpful if it turns out that the differential equation is not exact, as in this case Ψ (x,y) will not exist. This would be a waste of time to try and get a nonexistent function!

Therefore, let's see if we can get a test for exact differential equations. Let's begin with (2) and suppose that the differential equation is in fact exact. As it's accurate we know that somewhere out there is a function Ψ (x,y) which satisfies,

Ψx = M

Ψy = N

Currently, provided Ψ(x,y) is continuous and its first order derivatives are as well continuous we identify that

Ψx,y = Ψy,x

Though, we also have the subsequent.

Ψx,y = (Ψx)y = (M)y = My

Ψy,x = (Ψ) x  = (N)x = Nx

Thus, if a differential equation is exact and Ψ (x,y) meets all of its continuity conditions we should have as:

My  = Nx  .......................(5)

Similarly if (5) is not true there is no way for the differential equation to be exact.

Thus, we will use equation (5) as a test for exact differential equations. Whether (5) is true we will suppose that the differential equation is exact and that Ψ(x,y) meets all of its continuity conditions and proceed along with determining it. Remember that for all the illustrations here the continuity conditions will be met and thus this won't be an issue.


Related Discussions:- Solve the subsequent differential equation

Evaluate the mean of temperatures, Evaluate the mean of temperatures: ...

Evaluate the mean of temperatures: Example: Given the subsequent temperature readings, 573, 573, 574, 574, 574, 574, 575, 575, 575, 575, 575, 576, 576, 576, 578 So

Proper and improper fractions, Proper and Improper Fractions: Exampl...

Proper and Improper Fractions: Example: 3/8 proper fraction 8/3 improper fraction 3/3 improper fraction Here an improper fraction expressed as the sum of an in

Solve the form ax2 - bx - c factoring polynomials, Solve the form ax 2 - b...

Solve the form ax 2 - bx - c factoring polynomials ? This tutorial will help you factor quadratics that look something like this: 2x 2 -3x - 14 (Leading coefficient is

Calculus, I need help with my calculus

I need help with my calculus

If pth term of ap is q and qth term is p. p.t its nth term, If the p th te...

If the p th term of an AP is q and the q th term is p. P.T its n th term is (p+q-n). Ans:    APQ a p = q a q = p a n = ? a + (p-1) d = q a + (q-1) d = p

Volume of grains in the silo , The volume of grains in a silo at a particul...

The volume of grains in a silo at a particular time (measured in hours) is given by V (t) = 4t(3-t) m 3 . Find the rate of change of the volume of grains in the silo from first pri

.fractions, what is the difference between North America''s part of the tot...

what is the difference between North America''s part of the total population and Africa''s part

Prime Ideals, Given a standard 2x3 matrix show the ideal formed by the 2x2 ...

Given a standard 2x3 matrix show the ideal formed by the 2x2 minors is Prime.

Rewriting percent expressions, i have trouble going through problem in this...

i have trouble going through problem in this lesson. Markdown and Markups are theh ones im stuck in

Calculate the slope of the line, Calculate the slope of the line: Exa...

Calculate the slope of the line: Example: calculate  the  slope  of  the  line  whose  equation  is  y  =  2x  +  3  and  whose y-intercept is (0,3). Solution:    y =

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd