Solve the second order differential equations, Mathematics

Assignment Help:

Solve the subsequent IVP

Y'' - 9 y = 0, y(0) = 2, y'(0) = -1

Solution

First, the two functions

 y (t ) = e3t  and  y(t ) = e-3t

That is "nice enough" for us to by the general solution to the differential equation. At this point, please only believe this. You will be capable to verify this for yourself in a couple of sections.

The general solution to our differential equation is now,

y (t ) = c1 e-3t  + c2e3t

Here all we require to do is apply the initial conditions. It means that we require the derivative of the solution.

y' (t ) = -3 e-3t  + 3e3t

Plug in the initial conditions

2 = y (0) = c1 + c2

-1 = y'(0) = -3 c1 +3 c2

This provides us a system of two equations and two unknowns which can be solved.  Doing this yields

c1 = 7/6, c2 = 5/6

The solution to the IVP is so,

 y(t) = (7/6)e-3t + (5/6) e3t

Up to such point we've only looked at a particular differential equation and we found its solution by inspection. For rare little differential equations we can do this. Though, for the huge majority of the second order differential equations out there we will be not capable to do this.

Therefore, we would like a method for arriving at the two solutions we will require so as to form a general solution which will work for any linear, second order differential equation and constant coefficient equation. It is easier than it might initially look.

We will utilize the solutions we found in the first illustration as a guide. Each of the solutions in this illustration were in the form

y (t ) = ert

Remember, that we didn't include a constant in front of it as we can literally comprise any constant which we want and still get a solution. The significant idea here is to find the exponential function. One time we have which we can add on constants to our hearts content.

Thus, let's suppose that all solutions to,

ay′′ + by′ + cy = 0   ...................(4)

It will be of the form as

y (t ) = e rt        ........................(5)

 

To notice if we are correct all we require to do is plug this in the differential equation and notice what occurs.  Thus, let's get several derivatives and after that plug in.

y′ (t )= rert

 y′′ (t ) = r2ert

 a (r2ert )+ b (rert )+ c (ert ) = 0

ert (ar2 + br + c )= 0

Therefore, if (5) is to be a solution to (4) then the subsequent must be true

ert (ar2 + br + c ) = 0

It can be decreased further by noting as exponentials are never zero. Thus, (5) will be a solution to (4) given r is a solution to

 ar2 + br + c = 0    .......... (6)

 This equation is usually termed as the characteristic equation for (4).

Okay, then how do we use this to get solutions to a linear, constant coefficient, second order differential equation? First write down the feature equation, (6), for the differential equation, (4). It will be a quadratic equation and thus we must expect two roots, r1 and r2. One time we have these two roots we have two solutions to the differential equation.

1538_Solve the SECOND ORDER DIFFERENTIAL EQUATIONS.png...............(7)


Related Discussions:- Solve the second order differential equations

Arithmetic progression (a.p.), A series is said to be in Arithmetic...

A series is said to be in Arithmetic Progression (A.P.) if the consecutive numbers in the series differs by a constant value. This constant value is referre

Give the examples in real world of proportions , Give the Examples in Real ...

Give the Examples in Real World of Proportions? Proportions can be used in cooking. For example, the following is a set of ingredients for a pasta called "Spaghetti All' Amatri

The definition of the limit, The Definition of the Limit In this secti...

The Definition of the Limit In this section we will look at the precise, mathematical definition of three types of limits we'll be looking at the precise definition of limits

Probability, If a school has lockers with 50 numbers on each co...

If a school has lockers with 50 numbers on each combination lock, how many possible combinations using three numbers are there.

Ratio and proportion, find the ratio of each of the following in simplest f...

find the ratio of each of the following in simplest form 1] 9 months to 7 by 4

Right angle trigonometry, use the Pythagorean Theorem to find the length of...

use the Pythagorean Theorem to find the length of the missing side. Then find the indicated trigonometric function of the given angle. give an exact answer with a rational denomina

Statistics, what is the meaning of statistics

what is the meaning of statistics

Find the area enclosed between two concentric circles, Find the area enclos...

Find the area enclosed between two concentric circles of radii 3.5cm, 7cm. A third  concentric circle is drawn outside the 7cm circle so that the area enclosed between it and the 7

Power series - sequences and series, Power Series We have spent quite...

Power Series We have spent quite a bit of time talking about series now and along with just only a couple of exceptions we've spent most of that time talking about how to fin

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd