Solve the second order differential equations, Mathematics

Assignment Help:

Solve the subsequent IVP

Y'' - 9 y = 0, y(0) = 2, y'(0) = -1

Solution

First, the two functions

 y (t ) = e3t  and  y(t ) = e-3t

That is "nice enough" for us to by the general solution to the differential equation. At this point, please only believe this. You will be capable to verify this for yourself in a couple of sections.

The general solution to our differential equation is now,

y (t ) = c1 e-3t  + c2e3t

Here all we require to do is apply the initial conditions. It means that we require the derivative of the solution.

y' (t ) = -3 e-3t  + 3e3t

Plug in the initial conditions

2 = y (0) = c1 + c2

-1 = y'(0) = -3 c1 +3 c2

This provides us a system of two equations and two unknowns which can be solved.  Doing this yields

c1 = 7/6, c2 = 5/6

The solution to the IVP is so,

 y(t) = (7/6)e-3t + (5/6) e3t

Up to such point we've only looked at a particular differential equation and we found its solution by inspection. For rare little differential equations we can do this. Though, for the huge majority of the second order differential equations out there we will be not capable to do this.

Therefore, we would like a method for arriving at the two solutions we will require so as to form a general solution which will work for any linear, second order differential equation and constant coefficient equation. It is easier than it might initially look.

We will utilize the solutions we found in the first illustration as a guide. Each of the solutions in this illustration were in the form

y (t ) = ert

Remember, that we didn't include a constant in front of it as we can literally comprise any constant which we want and still get a solution. The significant idea here is to find the exponential function. One time we have which we can add on constants to our hearts content.

Thus, let's suppose that all solutions to,

ay′′ + by′ + cy = 0   ...................(4)

It will be of the form as

y (t ) = e rt        ........................(5)

 

To notice if we are correct all we require to do is plug this in the differential equation and notice what occurs.  Thus, let's get several derivatives and after that plug in.

y′ (t )= rert

 y′′ (t ) = r2ert

 a (r2ert )+ b (rert )+ c (ert ) = 0

ert (ar2 + br + c )= 0

Therefore, if (5) is to be a solution to (4) then the subsequent must be true

ert (ar2 + br + c ) = 0

It can be decreased further by noting as exponentials are never zero. Thus, (5) will be a solution to (4) given r is a solution to

 ar2 + br + c = 0    .......... (6)

 This equation is usually termed as the characteristic equation for (4).

Okay, then how do we use this to get solutions to a linear, constant coefficient, second order differential equation? First write down the feature equation, (6), for the differential equation, (4). It will be a quadratic equation and thus we must expect two roots, r1 and r2. One time we have these two roots we have two solutions to the differential equation.

1538_Solve the SECOND ORDER DIFFERENTIAL EQUATIONS.png...............(7)


Related Discussions:- Solve the second order differential equations

30-60-90 degree triangle, : Find the length of the hypotenuse of a right tr...

: Find the length of the hypotenuse of a right triangle if the lengths of the other two sides are both 3 inches.

Discrete-time signals as energy or power signals, Classify the following di...

Classify the following discrete-time signals as energy or power signals. If the signal is of energy type, find its energy. Otherwise, find the average power of the signal. X 1

Calculus!, x+2y^2=63 and 4x+y^2=0; Find the area of the regions enclosed by...

x+2y^2=63 and 4x+y^2=0; Find the area of the regions enclosed by the lines and curves.

Karls pearsons co-efficient of correlation, Aim: To test the significan...

Aim: To test the significant relationship between the accounting ratios of operating management and standard ideal ratios. Null Hypothesis(H 0 ) : There is no significa

Free - undamped vibrations, It is the simplest case which we can consider. ...

It is the simplest case which we can consider. Unforced or free vibrations sense that F(t) = 0 and undamped vibrations implies that g = 0. Under this case the differential equation

Comparing, compare 643,251 633,512 and 633.893 the answer is 633.512 what i...

compare 643,251 633,512 and 633.893 the answer is 633.512 what is the question

Interval of convergence - sequences and series, Interval of Convergence ...

Interval of Convergence After that secondly, the interval of all x's, involving the endpoints if need be, for which the power series converges is termed as the interval of conv

Completely factored polynomial, Factoring polynomials Factoring polynom...

Factoring polynomials Factoring polynomials is done in pretty much the similar manner.  We determine all of the terms which were multiplied together to obtain the given polynom

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd