Solve a quadratic equation through completing the square, Algebra

Assignment Help:

Solve a quadratic equation through completing the square

Now it's time to see how we employ completing the square to solve out a quadratic equation. The procedure is best seen as we work an instance thus let's do that.

Example: By using complete the square method to solve each of the following quadratic equations.

                                                         x2 - 6x + 1 = 0

Solution

                                   x2 - 6x + 1 = 0

Step 1 : Divide the equation through the coefficient of the x2 term.  Remember that completing the square needed a coefficient of one on this term & it will guarantee that we will get that. However, we don't need doing that for this equation.

Step 2 : Set the equation up in order that the x's are on the left side & the constant is on the right side.

                                 x2 - 6x = -1

Step 3: Complete the square on the left side.  Though, this time we will have to add the number to both sides of the equal sign rather than just the left side. It is because we have to recall the rule that what we do to one side of an equation we have to do to the other side of the equation.

First one, here is the number we adding up to both sides.

                ( -6/ 2  ) 2=  (-3)= 9

Now, complete the square.

           x2 - 6x + 9 = -1 +9

              (x - 3)2 = 8

Step 4: Now, at this instance notice that we can employ the square root property on this equation. That was the reason of the first three steps.  Doing this will provides us the solution to the equation.

x - 3 = ±  8     ⇒  x = 3 ±   √8

And i.e. the procedure.  Let's now do the remaining parts.


Related Discussions:- Solve a quadratic equation through completing the square

Mixing problems, It is the final type of problems which we'll be looking at...

It is the final type of problems which we'll be looking at in this section.  We are going to be looking at mixing solutions of distinct percentages to obtain a new percentage. The

Horizontal shifts, Horizontal Shifts These are quite simple as well tho...

Horizontal Shifts These are quite simple as well though there is one bit where we have to be careful. Given the graph of f ( x ) the graph of g ( x ) = f ( x + c ) will be t

Fractions, how do you solve a different fractions

how do you solve a different fractions

Algebra 2, has a y-intercept of 5 and a slope of 2/3. solve for the standa...

has a y-intercept of 5 and a slope of 2/3. solve for the standard equation

Combining functions, The topic along with functions which we ought to deal ...

The topic along with functions which we ought to deal with is combining functions.  For the most part this means performing fundamental arithmetic (subtraction, addition, multiplic

Unitary method, What are the pre conditions to applying unitary method to a...

What are the pre conditions to applying unitary method to a given problem? e.g. We know that 37 degrees celsius is equal to 98.6 degrees fahrenheit, but 1 degrees celsius is not eq

Word problems, Shirley has 8 fewer pairs of earrings than bracelets. She h...

Shirley has 8 fewer pairs of earrings than bracelets. She has 15 bracelets. How many pairs of earrings does she have?

Determine a list of all possible rational zeroes, Determine a list of all p...

Determine a list of all possible rational zeroes Let's see how to come up along a list of possible rational zeroes for a polynomial. Example    Find a list of all possible

Sketch the graph of polynomial, Sketch the graph of P ( x ) = 5x 5 - 20...

Sketch the graph of P ( x ) = 5x 5 - 20x 4 + 5x 3 + 50x2 - 20x - 40 . Solution We set up the zeroes & multiplicities of this polynomial in the previous section hence

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd